具有全局趋势和局部特征的时间序列语言表达的改进方法

M. Umano, M. Okamura, Kazuhisa Seta
{"title":"具有全局趋势和局部特征的时间序列语言表达的改进方法","authors":"M. Umano, M. Okamura, Kazuhisa Seta","doi":"10.1109/FUZZY.2009.5277088","DOIUrl":null,"url":null,"abstract":"We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We propose an improved method to have a linguistic expression with a global trend and local features of time series. A global trend is extracted via aggregated values on the fuzzy intervals in the temporal axis and local features are specified as the positions of locally large differences between the original data and the data representing the global trend. We apply the method to the data of Multimodal Summarization for Trend Information (MuST).","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improved method for linguistic expression of time series with global trend and local features\",\"authors\":\"M. Umano, M. Okamura, Kazuhisa Seta\",\"doi\":\"10.1109/FUZZY.2009.5277088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We propose an improved method to have a linguistic expression with a global trend and local features of time series. A global trend is extracted via aggregated values on the fuzzy intervals in the temporal axis and local features are specified as the positions of locally large differences between the original data and the data representing the global trend. We apply the method to the data of Multimodal Summarization for Trend Information (MuST).\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们有各种各样的时间序列,比如股票价格。我们通过自然语言的语言表达来理解它们,而不是传统的随机模型。我们提出了一种改进的方法,使语言表达同时具有时间序列的全局趋势和局部特征。通过时间轴模糊区间上的聚合值提取全局趋势,并将局部特征指定为原始数据与代表全局趋势的数据之间局部较大差异的位置。我们将该方法应用于趋势信息多模态汇总(MuST)数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved method for linguistic expression of time series with global trend and local features
We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We propose an improved method to have a linguistic expression with a global trend and local features of time series. A global trend is extracted via aggregated values on the fuzzy intervals in the temporal axis and local features are specified as the positions of locally large differences between the original data and the data representing the global trend. We apply the method to the data of Multimodal Summarization for Trend Information (MuST).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信