{"title":"具有全局趋势和局部特征的时间序列语言表达的改进方法","authors":"M. Umano, M. Okamura, Kazuhisa Seta","doi":"10.1109/FUZZY.2009.5277088","DOIUrl":null,"url":null,"abstract":"We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We propose an improved method to have a linguistic expression with a global trend and local features of time series. A global trend is extracted via aggregated values on the fuzzy intervals in the temporal axis and local features are specified as the positions of locally large differences between the original data and the data representing the global trend. We apply the method to the data of Multimodal Summarization for Trend Information (MuST).","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improved method for linguistic expression of time series with global trend and local features\",\"authors\":\"M. Umano, M. Okamura, Kazuhisa Seta\",\"doi\":\"10.1109/FUZZY.2009.5277088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We propose an improved method to have a linguistic expression with a global trend and local features of time series. A global trend is extracted via aggregated values on the fuzzy intervals in the temporal axis and local features are specified as the positions of locally large differences between the original data and the data representing the global trend. We apply the method to the data of Multimodal Summarization for Trend Information (MuST).\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved method for linguistic expression of time series with global trend and local features
We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We propose an improved method to have a linguistic expression with a global trend and local features of time series. A global trend is extracted via aggregated values on the fuzzy intervals in the temporal axis and local features are specified as the positions of locally large differences between the original data and the data representing the global trend. We apply the method to the data of Multimodal Summarization for Trend Information (MuST).