Shixiang Lu, Wei Wei, Xiaoyin Fu, Lichun Fan, Bo Xu
{"title":"口语翻译中基于短语的语言模型适应数据选择","authors":"Shixiang Lu, Wei Wei, Xiaoyin Fu, Lichun Fan, Bo Xu","doi":"10.1109/ISCSLP.2012.6423483","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an unsupervised phrase-based data selection model, address the problem of selecting no-domain-specific language model (LM) training data to build adapted LM for use. In spoken language translation (SLT) system, we aim at finding the LM training sentences which are similar to the translation task. Compared with the traditional bag-of-words models, the phrase-based data selection model is more effective because it captures contextual information in modeling the selection of phrase as a whole, rather than selection of single words in isolation. Large-scale experimental results demonstrate that our approach significantly outperforms the state-of-the-art approaches on both LM perplexity and translation performance, respectively.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Phrase-based data selection for language model adaptation in spoken language translation\",\"authors\":\"Shixiang Lu, Wei Wei, Xiaoyin Fu, Lichun Fan, Bo Xu\",\"doi\":\"10.1109/ISCSLP.2012.6423483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an unsupervised phrase-based data selection model, address the problem of selecting no-domain-specific language model (LM) training data to build adapted LM for use. In spoken language translation (SLT) system, we aim at finding the LM training sentences which are similar to the translation task. Compared with the traditional bag-of-words models, the phrase-based data selection model is more effective because it captures contextual information in modeling the selection of phrase as a whole, rather than selection of single words in isolation. Large-scale experimental results demonstrate that our approach significantly outperforms the state-of-the-art approaches on both LM perplexity and translation performance, respectively.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phrase-based data selection for language model adaptation in spoken language translation
In this paper, we propose an unsupervised phrase-based data selection model, address the problem of selecting no-domain-specific language model (LM) training data to build adapted LM for use. In spoken language translation (SLT) system, we aim at finding the LM training sentences which are similar to the translation task. Compared with the traditional bag-of-words models, the phrase-based data selection model is more effective because it captures contextual information in modeling the selection of phrase as a whole, rather than selection of single words in isolation. Large-scale experimental results demonstrate that our approach significantly outperforms the state-of-the-art approaches on both LM perplexity and translation performance, respectively.