一种混合时间效率建模方法用于srm的噪声预测

Ziyan Zhang, Zichao Jin, Chengxiu Chen, Selin Yaman, M. Krishnamurthy
{"title":"一种混合时间效率建模方法用于srm的噪声预测","authors":"Ziyan Zhang, Zichao Jin, Chengxiu Chen, Selin Yaman, M. Krishnamurthy","doi":"10.1109/ITEC51675.2021.9490075","DOIUrl":null,"url":null,"abstract":"This study presents a computationally cost-effective modeling approach for a switched reluctance machine (SRM) towards predicting vibration and acoustic noise. In the proposed approach, the SRM is modeled using Finite Element (FE) software for capturing magnetic snapshots from static simulations. Using an advanced field reconstruction method (FRM), these snapshots are used to develop basis functions to estimate magnetic fields under any arbitrary stator excitation and at any desired rotor position. This method includes magnetic properties of the machine and can estimate flux density at once instead of partially predicting it. The vibration model is built in FE software while the acoustic noise is predicted using the analytical method. The proposed study can significantly reduce the computational time for vibration and noise analysis with decent accuracy. Dynamic simulation by finite-element analysis (FEA) software and experimental verification have been carried out to verify the effectiveness of the proposed hybrid model.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Time-Efficient Modeling Approach for Acoustic Noise Prediction in SRMs\",\"authors\":\"Ziyan Zhang, Zichao Jin, Chengxiu Chen, Selin Yaman, M. Krishnamurthy\",\"doi\":\"10.1109/ITEC51675.2021.9490075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a computationally cost-effective modeling approach for a switched reluctance machine (SRM) towards predicting vibration and acoustic noise. In the proposed approach, the SRM is modeled using Finite Element (FE) software for capturing magnetic snapshots from static simulations. Using an advanced field reconstruction method (FRM), these snapshots are used to develop basis functions to estimate magnetic fields under any arbitrary stator excitation and at any desired rotor position. This method includes magnetic properties of the machine and can estimate flux density at once instead of partially predicting it. The vibration model is built in FE software while the acoustic noise is predicted using the analytical method. The proposed study can significantly reduce the computational time for vibration and noise analysis with decent accuracy. Dynamic simulation by finite-element analysis (FEA) software and experimental verification have been carried out to verify the effectiveness of the proposed hybrid model.\",\"PeriodicalId\":339989,\"journal\":{\"name\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC51675.2021.9490075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种计算成本效益高的开关磁阻电机(SRM)振动和噪声预测建模方法。在提出的方法中,SRM使用有限元(FE)软件进行建模,用于从静态模拟中捕获磁性快照。利用先进的磁场重建方法(FRM),利用这些快照建立基函数来估计任意定子励磁和任意期望转子位置的磁场。该方法包含了机器的磁性能,可以立即估计磁通密度,而不是部分预测它。在有限元软件中建立了振动模型,并用解析法对噪声进行了预测。该方法可以显著减少振动和噪声分析的计算时间,并具有较好的精度。利用有限元分析软件进行了动态仿真并进行了实验验证,验证了所提混合模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Time-Efficient Modeling Approach for Acoustic Noise Prediction in SRMs
This study presents a computationally cost-effective modeling approach for a switched reluctance machine (SRM) towards predicting vibration and acoustic noise. In the proposed approach, the SRM is modeled using Finite Element (FE) software for capturing magnetic snapshots from static simulations. Using an advanced field reconstruction method (FRM), these snapshots are used to develop basis functions to estimate magnetic fields under any arbitrary stator excitation and at any desired rotor position. This method includes magnetic properties of the machine and can estimate flux density at once instead of partially predicting it. The vibration model is built in FE software while the acoustic noise is predicted using the analytical method. The proposed study can significantly reduce the computational time for vibration and noise analysis with decent accuracy. Dynamic simulation by finite-element analysis (FEA) software and experimental verification have been carried out to verify the effectiveness of the proposed hybrid model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信