用于硬币识别的Gabor特征的统计

L. Shen, Sen Jia, Z. Ji, Wen-Sheng Chen
{"title":"用于硬币识别的Gabor特征的统计","authors":"L. Shen, Sen Jia, Z. Ji, Wen-Sheng Chen","doi":"10.1109/IST.2009.5071653","DOIUrl":null,"url":null,"abstract":"We present an image based approach for coin classification. Gabor wavelets are used to extract features for local texture representation. To achieve rotation-invariance, concentric ring structure is used to divide the coin image into a number of small sections. Statistics of Gabor coefficients within each section is then concatenated into a feature vector for whole image representation. Matching between two coin images are done via Euclidean distance measurement and the nearest neighbor classifier. The public MUSCLE database consisting of over 10,000 images is used to test our algorithm, results show that significant improvements over edge distance based methods have been achieved.","PeriodicalId":373922,"journal":{"name":"2009 IEEE International Workshop on Imaging Systems and Techniques","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Statictics of Gabor features for coin recognition\",\"authors\":\"L. Shen, Sen Jia, Z. Ji, Wen-Sheng Chen\",\"doi\":\"10.1109/IST.2009.5071653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an image based approach for coin classification. Gabor wavelets are used to extract features for local texture representation. To achieve rotation-invariance, concentric ring structure is used to divide the coin image into a number of small sections. Statistics of Gabor coefficients within each section is then concatenated into a feature vector for whole image representation. Matching between two coin images are done via Euclidean distance measurement and the nearest neighbor classifier. The public MUSCLE database consisting of over 10,000 images is used to test our algorithm, results show that significant improvements over edge distance based methods have been achieved.\",\"PeriodicalId\":373922,\"journal\":{\"name\":\"2009 IEEE International Workshop on Imaging Systems and Techniques\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Workshop on Imaging Systems and Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2009.5071653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Imaging Systems and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2009.5071653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们提出了一种基于图像的硬币分类方法。利用Gabor小波提取特征进行局部纹理表示。为了实现旋转不变性,采用同心圆结构将硬币图像分割成若干小截面。然后将每个部分中Gabor系数的统计信息连接成一个特征向量,用于整个图像的表示。通过欧几里得距离测量和最近邻分类器对两个硬币图像进行匹配。使用包含超过10,000张图像的公共MUSCLE数据库对我们的算法进行了测试,结果表明,与基于边缘距离的方法相比,我们已经取得了显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statictics of Gabor features for coin recognition
We present an image based approach for coin classification. Gabor wavelets are used to extract features for local texture representation. To achieve rotation-invariance, concentric ring structure is used to divide the coin image into a number of small sections. Statistics of Gabor coefficients within each section is then concatenated into a feature vector for whole image representation. Matching between two coin images are done via Euclidean distance measurement and the nearest neighbor classifier. The public MUSCLE database consisting of over 10,000 images is used to test our algorithm, results show that significant improvements over edge distance based methods have been achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信