用机器学习模型预测处理器性能

A. Beg
{"title":"用机器学习模型预测处理器性能","authors":"A. Beg","doi":"10.1109/MWSCAS.2007.4488749","DOIUrl":null,"url":null,"abstract":"Architectural simulators are traditionally used to study the design trade-offs for processor systems. The simulators are implemented in a high-level programming language or a hardware descriptive language, and are used to estimate the system performance prior to the hardware implementation. The simulations, however, may need to run for long periods of time for even a small set of design variations. In this paper, we propose a machine learnt (neural network/NN) model for estimating the execution performance of a superscalar processor. Multiple runs for the model are finished in less than a few milliseconds as compared to days or weeks required for simulation-based methods. The model is able to predict the execution throughput of a processor system with over 85% accuracy when tested with six SPEC2000 CPU integer benchmarks. The proposed model has possible applications in computer architecture research and teaching.","PeriodicalId":256061,"journal":{"name":"2007 50th Midwest Symposium on Circuits and Systems","volume":"3 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Predicting processor performance with a machine learnt model\",\"authors\":\"A. Beg\",\"doi\":\"10.1109/MWSCAS.2007.4488749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Architectural simulators are traditionally used to study the design trade-offs for processor systems. The simulators are implemented in a high-level programming language or a hardware descriptive language, and are used to estimate the system performance prior to the hardware implementation. The simulations, however, may need to run for long periods of time for even a small set of design variations. In this paper, we propose a machine learnt (neural network/NN) model for estimating the execution performance of a superscalar processor. Multiple runs for the model are finished in less than a few milliseconds as compared to days or weeks required for simulation-based methods. The model is able to predict the execution throughput of a processor system with over 85% accuracy when tested with six SPEC2000 CPU integer benchmarks. The proposed model has possible applications in computer architecture research and teaching.\",\"PeriodicalId\":256061,\"journal\":{\"name\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"volume\":\"3 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2007.4488749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 50th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2007.4488749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

传统上,架构模拟器用于研究处理器系统的设计权衡。仿真器是用高级编程语言或硬件描述语言实现的,用于在硬件实现之前估计系统性能。然而,即使是很小的设计变化,模拟也可能需要运行很长一段时间。在本文中,我们提出了一个机器学习(神经网络/NN)模型来估计一个超标量处理器的执行性能。与基于仿真的方法需要几天或几周的时间相比,模型的多次运行在不到几毫秒的时间内完成。在六个SPEC2000 CPU整数基准测试中,该模型能够预测处理器系统的执行吞吐量,准确率超过85%。该模型在计算机体系结构研究和教学中具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting processor performance with a machine learnt model
Architectural simulators are traditionally used to study the design trade-offs for processor systems. The simulators are implemented in a high-level programming language or a hardware descriptive language, and are used to estimate the system performance prior to the hardware implementation. The simulations, however, may need to run for long periods of time for even a small set of design variations. In this paper, we propose a machine learnt (neural network/NN) model for estimating the execution performance of a superscalar processor. Multiple runs for the model are finished in less than a few milliseconds as compared to days or weeks required for simulation-based methods. The model is able to predict the execution throughput of a processor system with over 85% accuracy when tested with six SPEC2000 CPU integer benchmarks. The proposed model has possible applications in computer architecture research and teaching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信