全脑仿真的基础:状态、转换和更新表征

R. Koene
{"title":"全脑仿真的基础:状态、转换和更新表征","authors":"R. Koene","doi":"10.1142/S179384301240001X","DOIUrl":null,"url":null,"abstract":"Whole brain emulation aims to re-implement functions of a mind in another computational substrate with the precision needed to predict the natural development of active states in as much as the influence of random processes allows. Furthermore, brain emulation does not present a possible model of a function, but rather presents the actual implementation of that function, based on the details of the circuitry of a specific brain. We introduce a notation for the representations of mind state, mind transition functions and transition update functions, for which elements and their relations must be quantified in accordance with measurements in the biological substrate. To discover the limits of significance in terms of the temporal and spatial resolution of measurements, we point out the importance of brain region and task specific constraints, as well as the importance of in-vivo measurements. We summarize further problems that need to be addressed.","PeriodicalId":418022,"journal":{"name":"International Journal of Machine Consciousness","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"FUNDAMENTALS OF WHOLE BRAIN EMULATION: STATE, TRANSITION AND UPDATE REPRESENTATIONS\",\"authors\":\"R. Koene\",\"doi\":\"10.1142/S179384301240001X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whole brain emulation aims to re-implement functions of a mind in another computational substrate with the precision needed to predict the natural development of active states in as much as the influence of random processes allows. Furthermore, brain emulation does not present a possible model of a function, but rather presents the actual implementation of that function, based on the details of the circuitry of a specific brain. We introduce a notation for the representations of mind state, mind transition functions and transition update functions, for which elements and their relations must be quantified in accordance with measurements in the biological substrate. To discover the limits of significance in terms of the temporal and spatial resolution of measurements, we point out the importance of brain region and task specific constraints, as well as the importance of in-vivo measurements. We summarize further problems that need to be addressed.\",\"PeriodicalId\":418022,\"journal\":{\"name\":\"International Journal of Machine Consciousness\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Consciousness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S179384301240001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Consciousness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S179384301240001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

全脑模拟的目标是在另一个计算基础上重新实现思维的功能,在随机过程的影响允许的范围内,以预测活动状态的自然发展所需的精度。此外,大脑仿真并不提供一个可能的功能模型,而是基于特定大脑的电路细节来呈现该功能的实际实现。我们引入了一种表征心理状态、心理转换函数和转换更新函数的符号,其中元素及其关系必须根据生物基质中的测量来量化。为了发现测量在时间和空间分辨率方面的局限性,我们指出了大脑区域和任务特定约束的重要性,以及体内测量的重要性。我们总结了需要解决的进一步问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FUNDAMENTALS OF WHOLE BRAIN EMULATION: STATE, TRANSITION AND UPDATE REPRESENTATIONS
Whole brain emulation aims to re-implement functions of a mind in another computational substrate with the precision needed to predict the natural development of active states in as much as the influence of random processes allows. Furthermore, brain emulation does not present a possible model of a function, but rather presents the actual implementation of that function, based on the details of the circuitry of a specific brain. We introduce a notation for the representations of mind state, mind transition functions and transition update functions, for which elements and their relations must be quantified in accordance with measurements in the biological substrate. To discover the limits of significance in terms of the temporal and spatial resolution of measurements, we point out the importance of brain region and task specific constraints, as well as the importance of in-vivo measurements. We summarize further problems that need to be addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信