{"title":"星群优化中参数动态自适应的模糊逻辑方法","authors":"Emer Bernal, O. Castillo, J. Soria","doi":"10.1109/SSCI.2016.7850266","DOIUrl":null,"url":null,"abstract":"In this article we propose the use of fuzzy systems for dynamic adjustment of parameters in the galactic swarm optimization (GSO) method. This algorithm is inspired by the movement of stars, galaxies and superclusters of galaxies under the force of gravity. GSO uses various cycles of exploration and exploitation phases to achieve a trade-off between the exploration of new solutions and exploitation of existing solutions. In this paper we proposed distinct fuzzy systems for the dynamic adaptation of the c3 and c4 parameters to measure the performance of the algorithm with 17 benchmark functions with different number of dimensions. In this paper a comparison was made between different variants to prove the efficacy of the method in optimization problems.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A fuzzy logic approach for dynamic adaptation of parameters in galactic swarm optimization\",\"authors\":\"Emer Bernal, O. Castillo, J. Soria\",\"doi\":\"10.1109/SSCI.2016.7850266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we propose the use of fuzzy systems for dynamic adjustment of parameters in the galactic swarm optimization (GSO) method. This algorithm is inspired by the movement of stars, galaxies and superclusters of galaxies under the force of gravity. GSO uses various cycles of exploration and exploitation phases to achieve a trade-off between the exploration of new solutions and exploitation of existing solutions. In this paper we proposed distinct fuzzy systems for the dynamic adaptation of the c3 and c4 parameters to measure the performance of the algorithm with 17 benchmark functions with different number of dimensions. In this paper a comparison was made between different variants to prove the efficacy of the method in optimization problems.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7850266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fuzzy logic approach for dynamic adaptation of parameters in galactic swarm optimization
In this article we propose the use of fuzzy systems for dynamic adjustment of parameters in the galactic swarm optimization (GSO) method. This algorithm is inspired by the movement of stars, galaxies and superclusters of galaxies under the force of gravity. GSO uses various cycles of exploration and exploitation phases to achieve a trade-off between the exploration of new solutions and exploitation of existing solutions. In this paper we proposed distinct fuzzy systems for the dynamic adaptation of the c3 and c4 parameters to measure the performance of the algorithm with 17 benchmark functions with different number of dimensions. In this paper a comparison was made between different variants to prove the efficacy of the method in optimization problems.