颗粒大小对1-m3燃烧室铝燃烧动力学的影响

N. Poletaev
{"title":"颗粒大小对1-m3燃烧室铝燃烧动力学的影响","authors":"N. Poletaev","doi":"10.22227/0869-7493.2022.31.05.6-13","DOIUrl":null,"url":null,"abstract":"Introduction. The results of a standard study of the explosibility of aluminum air suspensions (AAS) can contribute to the development of AAS combustion physics. In particular, a complex of information about the polydispersity and of the AAS low explosion limit values in a 1-m3 chamber made it possible to determine the maximum particle size of the explosive fraction of a polydisperse sample d*m,t ≈ 40–50 µm (Poletaev, 2014). In the present work, a relationship is established between the AAS combustion dynamics in a 1-m3 chamber and persion. The dispersity of sample particles is described by the mass-average particle size of its explosive fraction (d*50), in contrast to the works of other researchers who use the mass-average size of all particles (d50).Initial data. Known information about the dispersity and explosion parameters of 15 aluminum samples studied in a 1-m3 chamber was used. The continuous particle size distribution functions necessary for calculating d*50 were represented by the Rosin – Rammler distributions filling the gaps between the discrete data of the sieve analysis of the samples.Combustion dynamics. The dynamics of AAS turbulent combustion in a 1-m3 chamber is represented by the maximum air suspension burn-up rate Ub. Ub was calculated using the formula (Kumar, 1992) intended for gas-air mixtures by substituting the AAS explosion parameters into this formula.Results and its discussion. A plot of the d*50 Ub complex versus d*50  is shown. The average value of the complex (≈ 33 µm·m/s) is constant in the range 10 ≤ d*50  ≤ 35 µm. The latter is typical for the product of the particle size and the normal velocity of the laminar flame in AAS (Ben Moussa, 2017) and indicates the similarity of the effect of particle dispersion on the dynamics of turbulent and laminar combustion of AAS.Conclusions. The dispersion of an explosive polydisperse aluminum sample is determined by the average particle size of the explosive fraction of the sample d*50. The similarity of the combustion patterns indicates a relationship between the mechanisms of laminar and turbulent flame propagation in AAS.","PeriodicalId":169739,"journal":{"name":"Pozharovzryvobezopasnost/Fire and Explosion Safety","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Particle size influence on the aluminum combustion dynamics in 1-m3 chamber\",\"authors\":\"N. Poletaev\",\"doi\":\"10.22227/0869-7493.2022.31.05.6-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The results of a standard study of the explosibility of aluminum air suspensions (AAS) can contribute to the development of AAS combustion physics. In particular, a complex of information about the polydispersity and of the AAS low explosion limit values in a 1-m3 chamber made it possible to determine the maximum particle size of the explosive fraction of a polydisperse sample d*m,t ≈ 40–50 µm (Poletaev, 2014). In the present work, a relationship is established between the AAS combustion dynamics in a 1-m3 chamber and persion. The dispersity of sample particles is described by the mass-average particle size of its explosive fraction (d*50), in contrast to the works of other researchers who use the mass-average size of all particles (d50).Initial data. Known information about the dispersity and explosion parameters of 15 aluminum samples studied in a 1-m3 chamber was used. The continuous particle size distribution functions necessary for calculating d*50 were represented by the Rosin – Rammler distributions filling the gaps between the discrete data of the sieve analysis of the samples.Combustion dynamics. The dynamics of AAS turbulent combustion in a 1-m3 chamber is represented by the maximum air suspension burn-up rate Ub. Ub was calculated using the formula (Kumar, 1992) intended for gas-air mixtures by substituting the AAS explosion parameters into this formula.Results and its discussion. A plot of the d*50 Ub complex versus d*50  is shown. The average value of the complex (≈ 33 µm·m/s) is constant in the range 10 ≤ d*50  ≤ 35 µm. The latter is typical for the product of the particle size and the normal velocity of the laminar flame in AAS (Ben Moussa, 2017) and indicates the similarity of the effect of particle dispersion on the dynamics of turbulent and laminar combustion of AAS.Conclusions. The dispersion of an explosive polydisperse aluminum sample is determined by the average particle size of the explosive fraction of the sample d*50. The similarity of the combustion patterns indicates a relationship between the mechanisms of laminar and turbulent flame propagation in AAS.\",\"PeriodicalId\":169739,\"journal\":{\"name\":\"Pozharovzryvobezopasnost/Fire and Explosion Safety\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pozharovzryvobezopasnost/Fire and Explosion Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22227/0869-7493.2022.31.05.6-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pozharovzryvobezopasnost/Fire and Explosion Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22227/0869-7493.2022.31.05.6-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍。对铝空气悬浮液(AAS)的爆炸特性进行了标准的研究,对AAS燃烧物理的发展具有重要的指导意义。特别是,关于多分散性和AAS低爆炸极限值的复杂信息在1-m3室中使得确定多分散样品爆炸部分的最大粒径d*m,t≈40-50µm成为可能(Poletaev, 2014)。在本工作中,建立了1-m3燃烧室中原子吸收光谱燃烧动力学与燃烧浓度之间的关系。样品颗粒的分散性用其爆炸部分的质量平均粒度(d*50)来描述,这与其他研究人员使用所有颗粒的质量平均尺寸(d50)形成对比。初始数据。在一个1-m3的腔室中研究了15个铝样品的分散和爆炸参数的已知信息。计算d*50所需的连续粒度分布函数用Rosin - Rammler分布表示,填补了样品筛分分析离散数据之间的空白。燃烧动力学。AAS在1-m3燃烧室中的湍流燃烧动力学用最大空气悬浮燃烧速率Ub表示。通过将AAS爆炸参数代入该公式,利用(Kumar, 1992)用于气体-空气混合物的公式计算Ub。结果及其讨论。图中显示了d*50 Ub复合物与d*50复合物的关系。络合物的平均值(≈33µm·m/s)在10≤d*50≤35µm范围内是恒定的。后者是原子吸收光谱中颗粒大小与层流火焰法向速度的典型产物(Ben Moussa, 2017),表明颗粒弥散对原子吸收光谱湍流燃烧和层流燃烧动力学的影响具有相似性。爆炸性多分散铝试样的分散性能由试样中爆炸组分的平均粒径d*50决定。燃烧模式的相似性表明了原子吸收光谱中层流和湍流火焰传播机制之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle size influence on the aluminum combustion dynamics in 1-m3 chamber
Introduction. The results of a standard study of the explosibility of aluminum air suspensions (AAS) can contribute to the development of AAS combustion physics. In particular, a complex of information about the polydispersity and of the AAS low explosion limit values in a 1-m3 chamber made it possible to determine the maximum particle size of the explosive fraction of a polydisperse sample d*m,t ≈ 40–50 µm (Poletaev, 2014). In the present work, a relationship is established between the AAS combustion dynamics in a 1-m3 chamber and persion. The dispersity of sample particles is described by the mass-average particle size of its explosive fraction (d*50), in contrast to the works of other researchers who use the mass-average size of all particles (d50).Initial data. Known information about the dispersity and explosion parameters of 15 aluminum samples studied in a 1-m3 chamber was used. The continuous particle size distribution functions necessary for calculating d*50 were represented by the Rosin – Rammler distributions filling the gaps between the discrete data of the sieve analysis of the samples.Combustion dynamics. The dynamics of AAS turbulent combustion in a 1-m3 chamber is represented by the maximum air suspension burn-up rate Ub. Ub was calculated using the formula (Kumar, 1992) intended for gas-air mixtures by substituting the AAS explosion parameters into this formula.Results and its discussion. A plot of the d*50 Ub complex versus d*50  is shown. The average value of the complex (≈ 33 µm·m/s) is constant in the range 10 ≤ d*50  ≤ 35 µm. The latter is typical for the product of the particle size and the normal velocity of the laminar flame in AAS (Ben Moussa, 2017) and indicates the similarity of the effect of particle dispersion on the dynamics of turbulent and laminar combustion of AAS.Conclusions. The dispersion of an explosive polydisperse aluminum sample is determined by the average particle size of the explosive fraction of the sample d*50. The similarity of the combustion patterns indicates a relationship between the mechanisms of laminar and turbulent flame propagation in AAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信