势头:旧世界的新面貌

Haoran Zhang, Zihe Tang, Luwei Sun
{"title":"势头:旧世界的新面貌","authors":"Haoran Zhang, Zihe Tang, Luwei Sun","doi":"10.1145/3572647.3572684","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the stock market, many researchers examined the profitability and market efficiency of various trading strategies with the idea of Momentum Investing. This study optimizes the Moving Average Convergence-Divergence (MACD) oscillator and tests its performance under different trading strategies. The research simulates the trading process of 40 U.S. industry portfolios from 1926 to 2021 using different MACD oscillators constructed by the Exponential Moving Average (EMA) indicators of different decay parameters. To acquire the optimal MACD oscillator, the study performs the OLS linear regression analysis on each industry's stimulated excess returns and excess industry portfolio returns and uses the corresponding regression coefficients (alpha and beta) as the assessment criteria of the performance. To further optimize the model, the study improves the traditional trading strategy, the simple-crossover operation, to the n-day holding strategy, which aims to weaken the influence of false signals. The result shows that MACD strategies generally have positive alpha, hinting that investor can utilize this indicator to diversify portfolios and hedge their risks.","PeriodicalId":118352,"journal":{"name":"Proceedings of the 2022 6th International Conference on E-Business and Internet","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Momentum: A New Look on the Old World\",\"authors\":\"Haoran Zhang, Zihe Tang, Luwei Sun\",\"doi\":\"10.1145/3572647.3572684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of the stock market, many researchers examined the profitability and market efficiency of various trading strategies with the idea of Momentum Investing. This study optimizes the Moving Average Convergence-Divergence (MACD) oscillator and tests its performance under different trading strategies. The research simulates the trading process of 40 U.S. industry portfolios from 1926 to 2021 using different MACD oscillators constructed by the Exponential Moving Average (EMA) indicators of different decay parameters. To acquire the optimal MACD oscillator, the study performs the OLS linear regression analysis on each industry's stimulated excess returns and excess industry portfolio returns and uses the corresponding regression coefficients (alpha and beta) as the assessment criteria of the performance. To further optimize the model, the study improves the traditional trading strategy, the simple-crossover operation, to the n-day holding strategy, which aims to weaken the influence of false signals. The result shows that MACD strategies generally have positive alpha, hinting that investor can utilize this indicator to diversify portfolios and hedge their risks.\",\"PeriodicalId\":118352,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on E-Business and Internet\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on E-Business and Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572647.3572684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on E-Business and Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572647.3572684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着股票市场的快速发展,许多研究者用动量投资的思想考察了各种交易策略的盈利能力和市场效率。本研究优化了MACD指标,并对其在不同交易策略下的表现进行了测试。该研究模拟了从1926年到2021年40个美国行业投资组合的交易过程,使用由不同衰减参数的指数移动平均(EMA)指标构建的不同MACD振荡指标。为了获得最优MACD振荡指标,本研究对各个行业的刺激超额收益和行业超额投资组合收益进行OLS线性回归分析,并使用相应的回归系数(alpha和beta)作为绩效评估标准。为了进一步优化模型,本研究将传统的简单交叉交易策略改进为n天持有策略,以减弱虚假信号的影响。结果表明,MACD策略的alpha值普遍为正,表明投资者可以利用该指标实现投资组合多元化,对冲风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Momentum: A New Look on the Old World
With the rapid growth of the stock market, many researchers examined the profitability and market efficiency of various trading strategies with the idea of Momentum Investing. This study optimizes the Moving Average Convergence-Divergence (MACD) oscillator and tests its performance under different trading strategies. The research simulates the trading process of 40 U.S. industry portfolios from 1926 to 2021 using different MACD oscillators constructed by the Exponential Moving Average (EMA) indicators of different decay parameters. To acquire the optimal MACD oscillator, the study performs the OLS linear regression analysis on each industry's stimulated excess returns and excess industry portfolio returns and uses the corresponding regression coefficients (alpha and beta) as the assessment criteria of the performance. To further optimize the model, the study improves the traditional trading strategy, the simple-crossover operation, to the n-day holding strategy, which aims to weaken the influence of false signals. The result shows that MACD strategies generally have positive alpha, hinting that investor can utilize this indicator to diversify portfolios and hedge their risks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信