V. Pisarkova, Ekaterina Lopukhova, Alfiya Yamileva, Alexey S. Kovtunenko, G. Voronkov, E. Grakhova, R. Kutluyarov, A. Bilyalov
{"title":"基于多模态方法的医学诊断机器学习方法:简要回顾","authors":"V. Pisarkova, Ekaterina Lopukhova, Alfiya Yamileva, Alexey S. Kovtunenko, G. Voronkov, E. Grakhova, R. Kutluyarov, A. Bilyalov","doi":"10.1145/3584202.3584305","DOIUrl":null,"url":null,"abstract":"The brief review shows the potential of machine learning to improve the accuracy of multimodal medical diagnostic methods to a new level. Various machine learning algorithms, modalities, and cases demonstrating this approach’s significance are considered.","PeriodicalId":438341,"journal":{"name":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods for medical diagnostics based on a multimodal approach: a brief review\",\"authors\":\"V. Pisarkova, Ekaterina Lopukhova, Alfiya Yamileva, Alexey S. Kovtunenko, G. Voronkov, E. Grakhova, R. Kutluyarov, A. Bilyalov\",\"doi\":\"10.1145/3584202.3584305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brief review shows the potential of machine learning to improve the accuracy of multimodal medical diagnostic methods to a new level. Various machine learning algorithms, modalities, and cases demonstrating this approach’s significance are considered.\",\"PeriodicalId\":438341,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Future Networks & Distributed Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Future Networks & Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584202.3584305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584202.3584305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning methods for medical diagnostics based on a multimodal approach: a brief review
The brief review shows the potential of machine learning to improve the accuracy of multimodal medical diagnostic methods to a new level. Various machine learning algorithms, modalities, and cases demonstrating this approach’s significance are considered.