增强热- rgb融合鲁棒目标检测

Wassim A. El Ahmar, Yahya Massoud, Dhanvin Kolhatkar, Hamzah Alghamdi, Mohammad Al Ja'afreh, R. Laganière, R. Hammoud
{"title":"增强热- rgb融合鲁棒目标检测","authors":"Wassim A. El Ahmar, Yahya Massoud, Dhanvin Kolhatkar, Hamzah Alghamdi, Mohammad Al Ja'afreh, R. Laganière, R. Hammoud","doi":"10.1109/CVPRW59228.2023.00042","DOIUrl":null,"url":null,"abstract":"Thermal imaging has seen rapid development in the last few years due to its robustness in different weather and lighting conditions and its reduced production cost. In this paper, we study the performance of different RGB-Thermal fusion methods in the task of object detection, and introduce a new RGB-Thermal fusion approach that enhances the performance by up to 9% using a sigmoid-activated gating mechanism for early fusion. We conduct our experiments on an enhanced version of the City Scene RGB-Thermal MOT Dataset where we register the RGB and corresponding thermal images in order to conduct fusion experiments. Finally, we benchmark the speed of our proposed fusion method and show that it adds negligible overhead to the model processing time. Our work would be useful for autonomous systems and any multi-model machine vision system. The improved version of the dataset, our trained models, and source code are available at https://github.com/wassimea/rgb-thermalfusion.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Thermal-RGB Fusion for Robust Object Detection\",\"authors\":\"Wassim A. El Ahmar, Yahya Massoud, Dhanvin Kolhatkar, Hamzah Alghamdi, Mohammad Al Ja'afreh, R. Laganière, R. Hammoud\",\"doi\":\"10.1109/CVPRW59228.2023.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal imaging has seen rapid development in the last few years due to its robustness in different weather and lighting conditions and its reduced production cost. In this paper, we study the performance of different RGB-Thermal fusion methods in the task of object detection, and introduce a new RGB-Thermal fusion approach that enhances the performance by up to 9% using a sigmoid-activated gating mechanism for early fusion. We conduct our experiments on an enhanced version of the City Scene RGB-Thermal MOT Dataset where we register the RGB and corresponding thermal images in order to conduct fusion experiments. Finally, we benchmark the speed of our proposed fusion method and show that it adds negligible overhead to the model processing time. Our work would be useful for autonomous systems and any multi-model machine vision system. The improved version of the dataset, our trained models, and source code are available at https://github.com/wassimea/rgb-thermalfusion.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热成像技术由于其在不同天气和光照条件下的稳定性以及其降低的生产成本,在过去几年中得到了迅速的发展。在本文中,我们研究了不同的rgb -热融合方法在目标检测任务中的性能,并引入了一种新的rgb -热融合方法,该方法使用s型激活门控机制进行早期融合,将性能提高了9%。我们在城市场景RGB- thermal MOT数据集的增强版本上进行实验,我们注册了RGB和相应的热图像,以便进行融合实验。最后,我们对所提出的融合方法的速度进行了基准测试,并表明它对模型处理时间的开销可以忽略不计。我们的工作将对自治系统和任何多模型机器视觉系统有用。数据集的改进版本、我们训练过的模型和源代码可在https://github.com/wassimea/rgb-thermalfusion上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Thermal-RGB Fusion for Robust Object Detection
Thermal imaging has seen rapid development in the last few years due to its robustness in different weather and lighting conditions and its reduced production cost. In this paper, we study the performance of different RGB-Thermal fusion methods in the task of object detection, and introduce a new RGB-Thermal fusion approach that enhances the performance by up to 9% using a sigmoid-activated gating mechanism for early fusion. We conduct our experiments on an enhanced version of the City Scene RGB-Thermal MOT Dataset where we register the RGB and corresponding thermal images in order to conduct fusion experiments. Finally, we benchmark the speed of our proposed fusion method and show that it adds negligible overhead to the model processing time. Our work would be useful for autonomous systems and any multi-model machine vision system. The improved version of the dataset, our trained models, and source code are available at https://github.com/wassimea/rgb-thermalfusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信