被动时间指纹

J. François, H. Abdelnur, R. State, O. Festor
{"title":"被动时间指纹","authors":"J. François, H. Abdelnur, R. State, O. Festor","doi":"10.1109/INM.2011.5990703","DOIUrl":null,"url":null,"abstract":"We describe in this paper a tool named PTF (Passive and Temporal Fingerprinting) for fingerprinting network devices. The objective of device fingerprinting is to uniquely identify device types by looking at captured traffic from devices implementing that protocol. The main novelty of our approach consists in leveraging both temporal and behavioral features for this purpose. The key contribution is a fingerprinting scheme, where individual fingerprints are represented by tree-based temporal finite state machines. We have developed a fingerprinting scheme that leverages supervised learning approaches based on support vector machines for this purpose.","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"PTF: Passive Temporal Fingerprinting\",\"authors\":\"J. François, H. Abdelnur, R. State, O. Festor\",\"doi\":\"10.1109/INM.2011.5990703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe in this paper a tool named PTF (Passive and Temporal Fingerprinting) for fingerprinting network devices. The objective of device fingerprinting is to uniquely identify device types by looking at captured traffic from devices implementing that protocol. The main novelty of our approach consists in leveraging both temporal and behavioral features for this purpose. The key contribution is a fingerprinting scheme, where individual fingerprints are represented by tree-based temporal finite state machines. We have developed a fingerprinting scheme that leverages supervised learning approaches based on support vector machines for this purpose.\",\"PeriodicalId\":433520,\"journal\":{\"name\":\"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2011.5990703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文描述了一种用于指纹识别网络设备的工具PTF (Passive and Temporal Fingerprinting)。设备指纹识别的目标是通过查看从实现该协议的设备捕获的流量来唯一地标识设备类型。我们的方法的主要新颖之处在于利用时间和行为特征来实现这一目的。关键贡献是指纹方案,其中单个指纹由基于树的时间有限状态机表示。我们开发了一种指纹识别方案,利用基于支持向量机的监督学习方法来实现这一目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PTF: Passive Temporal Fingerprinting
We describe in this paper a tool named PTF (Passive and Temporal Fingerprinting) for fingerprinting network devices. The objective of device fingerprinting is to uniquely identify device types by looking at captured traffic from devices implementing that protocol. The main novelty of our approach consists in leveraging both temporal and behavioral features for this purpose. The key contribution is a fingerprinting scheme, where individual fingerprints are represented by tree-based temporal finite state machines. We have developed a fingerprinting scheme that leverages supervised learning approaches based on support vector machines for this purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信