考虑非线性磁芯损耗模型的基于象群优化的感应电机参数估计

S. Choudhary, T. Bera
{"title":"考虑非线性磁芯损耗模型的基于象群优化的感应电机参数估计","authors":"S. Choudhary, T. Bera","doi":"10.1109/ICCE50343.2020.9290586","DOIUrl":null,"url":null,"abstract":"Estimation of parameters for an induction machine is essential in performance analysis and control scheme design in industrial applications. In this paper, elephant herding optimization (EHO) technique-based parameter estimation technique for an induction motor is studied, and the optimum parameters are obtained using a least mean square technique (LMST). The input impedance is studied at different slip samples and a steady-state model of the squirrel-cage induction machine is developed by incorporating the nonlinear core-loss resistance. The real machine parameters are obtained from the practical experimentation on a squirrel cage induction machine. Real machine parameters are fed to the optimization algorithm as the initial values. By considering the nonlinear core-loss parameter in the equivalent circuit model, the proposed method suggests a more accurate parameter estimation technique. The effectiveness of the proposed EHO-based induction machine parameters optimization techniques is validated by the experimental and simulation results.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elephant Herding Optimization (EHO) Based Parameters Estimation of Induction Machine Considering the Nonlinear Core-Loss Model\",\"authors\":\"S. Choudhary, T. Bera\",\"doi\":\"10.1109/ICCE50343.2020.9290586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of parameters for an induction machine is essential in performance analysis and control scheme design in industrial applications. In this paper, elephant herding optimization (EHO) technique-based parameter estimation technique for an induction motor is studied, and the optimum parameters are obtained using a least mean square technique (LMST). The input impedance is studied at different slip samples and a steady-state model of the squirrel-cage induction machine is developed by incorporating the nonlinear core-loss resistance. The real machine parameters are obtained from the practical experimentation on a squirrel cage induction machine. Real machine parameters are fed to the optimization algorithm as the initial values. By considering the nonlinear core-loss parameter in the equivalent circuit model, the proposed method suggests a more accurate parameter estimation technique. The effectiveness of the proposed EHO-based induction machine parameters optimization techniques is validated by the experimental and simulation results.\",\"PeriodicalId\":421963,\"journal\":{\"name\":\"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE50343.2020.9290586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业应用中,感应电机的参数估计在性能分析和控制方案设计中是必不可少的。本文研究了基于象群优化(EHO)技术的异步电动机参数估计技术,并利用最小均方法(LMST)获得了最优参数。研究了不同滑移情况下的输入阻抗,建立了考虑非线性铁心损耗电阻的鼠笼式感应电机稳态模型。在鼠笼式感应电机上进行了实际实验,得到了实际的电机参数。将实际机器参数作为初始值馈入优化算法。该方法考虑了等效电路模型中的非线性铁芯损耗参数,提出了一种更为精确的参数估计技术。实验和仿真结果验证了基于eho的感应电机参数优化技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elephant Herding Optimization (EHO) Based Parameters Estimation of Induction Machine Considering the Nonlinear Core-Loss Model
Estimation of parameters for an induction machine is essential in performance analysis and control scheme design in industrial applications. In this paper, elephant herding optimization (EHO) technique-based parameter estimation technique for an induction motor is studied, and the optimum parameters are obtained using a least mean square technique (LMST). The input impedance is studied at different slip samples and a steady-state model of the squirrel-cage induction machine is developed by incorporating the nonlinear core-loss resistance. The real machine parameters are obtained from the practical experimentation on a squirrel cage induction machine. Real machine parameters are fed to the optimization algorithm as the initial values. By considering the nonlinear core-loss parameter in the equivalent circuit model, the proposed method suggests a more accurate parameter estimation technique. The effectiveness of the proposed EHO-based induction machine parameters optimization techniques is validated by the experimental and simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信