TSP中的高性能GPU加速局部优化

K. Rocki, R. Suda
{"title":"TSP中的高性能GPU加速局部优化","authors":"K. Rocki, R. Suda","doi":"10.1109/IPDPSW.2013.227","DOIUrl":null,"url":null,"abstract":"This paper presents a high performance GPU accelerated implementation of 2-opt local search algorithm for the Traveling Salesman Problem (TSP). GPU usage significantly decreases the execution time needed for tour optimization, however it also requires a complicated and well tuned implementation. With the problem size growing, the time spent on local optimization comparing the graph edges grows significantly. According to our results based on the instances from the TSPLIB library, the time needed to perform a simple local search operation can be decreased approximately 5 to 45 times compared to a corresponding parallel CPU code implementation using 6 cores. The code has been implemented in OpenCL and as well as in CUDA and tested on AMD and NVIDIA devices. The experimental studies show that the optimization algorithm using the GPU local search converges from up to 300 times faster compared to the sequential CPU version on average, depending on the problem size. The main contributions of this paper are the problem division scheme exploiting data locality which allows to solve arbitrarily big problem instances using GPU and the parallel implementation of the algorithm itself.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"High Performance GPU Accelerated Local Optimization in TSP\",\"authors\":\"K. Rocki, R. Suda\",\"doi\":\"10.1109/IPDPSW.2013.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high performance GPU accelerated implementation of 2-opt local search algorithm for the Traveling Salesman Problem (TSP). GPU usage significantly decreases the execution time needed for tour optimization, however it also requires a complicated and well tuned implementation. With the problem size growing, the time spent on local optimization comparing the graph edges grows significantly. According to our results based on the instances from the TSPLIB library, the time needed to perform a simple local search operation can be decreased approximately 5 to 45 times compared to a corresponding parallel CPU code implementation using 6 cores. The code has been implemented in OpenCL and as well as in CUDA and tested on AMD and NVIDIA devices. The experimental studies show that the optimization algorithm using the GPU local search converges from up to 300 times faster compared to the sequential CPU version on average, depending on the problem size. The main contributions of this paper are the problem division scheme exploiting data locality which allows to solve arbitrarily big problem instances using GPU and the parallel implementation of the algorithm itself.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

针对旅行商问题(TSP),提出了一种高性能GPU加速实现的2-opt局部搜索算法。GPU的使用大大减少了巡回优化所需的执行时间,但是它也需要一个复杂的、经过良好调优的实现。随着问题规模的增长,用于图边比较的局部优化时间显著增加。根据我们基于TSPLIB库实例的结果,与使用6核的相应并行CPU代码实现相比,执行简单的本地搜索操作所需的时间可以减少大约5到45倍。该代码已在OpenCL和CUDA中实现,并在AMD和NVIDIA设备上进行了测试。实验研究表明,根据问题的大小,使用GPU局部搜索的优化算法的收敛速度平均比顺序CPU版本快300倍。本文的主要贡献是利用数据局部性的问题划分方案,该方案允许使用GPU解决任意大的问题实例,以及算法本身的并行实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Performance GPU Accelerated Local Optimization in TSP
This paper presents a high performance GPU accelerated implementation of 2-opt local search algorithm for the Traveling Salesman Problem (TSP). GPU usage significantly decreases the execution time needed for tour optimization, however it also requires a complicated and well tuned implementation. With the problem size growing, the time spent on local optimization comparing the graph edges grows significantly. According to our results based on the instances from the TSPLIB library, the time needed to perform a simple local search operation can be decreased approximately 5 to 45 times compared to a corresponding parallel CPU code implementation using 6 cores. The code has been implemented in OpenCL and as well as in CUDA and tested on AMD and NVIDIA devices. The experimental studies show that the optimization algorithm using the GPU local search converges from up to 300 times faster compared to the sequential CPU version on average, depending on the problem size. The main contributions of this paper are the problem division scheme exploiting data locality which allows to solve arbitrarily big problem instances using GPU and the parallel implementation of the algorithm itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信