具有透明边界条件的广角型抛物方程及其在浅水声学中的应用

P. Petrov, Matthias Ehrhardt
{"title":"具有透明边界条件的广角型抛物方程及其在浅水声学中的应用","authors":"P. Petrov, Matthias Ehrhardt","doi":"10.1109/DD46733.2019.9016598","DOIUrl":null,"url":null,"abstract":"A wide-angle mode parabolic equation is obtained from the horizontal refraction equation by using the rational-linear approximation of the square-root operator. A finite-difference scheme for the numerical solution of the derived equation is developed. The scheme is based on the standard Crank–Nicolson method and fully-discrete transparent boundary conditions which allow for an accurate simulation of sound propagation on an unbounded domain.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics\",\"authors\":\"P. Petrov, Matthias Ehrhardt\",\"doi\":\"10.1109/DD46733.2019.9016598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide-angle mode parabolic equation is obtained from the horizontal refraction equation by using the rational-linear approximation of the square-root operator. A finite-difference scheme for the numerical solution of the derived equation is developed. The scheme is based on the standard Crank–Nicolson method and fully-discrete transparent boundary conditions which allow for an accurate simulation of sound propagation on an unbounded domain.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用平方根算子的有理线性近似,从水平折射方程得到了广角模抛物方程。给出了导出方程数值解的有限差分格式。该方案基于标准的Crank-Nicolson方法和完全离散的透明边界条件,允许在无界域上精确模拟声音传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
A wide-angle mode parabolic equation is obtained from the horizontal refraction equation by using the rational-linear approximation of the square-root operator. A finite-difference scheme for the numerical solution of the derived equation is developed. The scheme is based on the standard Crank–Nicolson method and fully-discrete transparent boundary conditions which allow for an accurate simulation of sound propagation on an unbounded domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信