EGFNet:用于皮肤癌病灶分割的高效引导特征融合网络

Rui Fan, Zhiqiang Wang, Qing Zhu
{"title":"EGFNet:用于皮肤癌病灶分割的高效引导特征融合网络","authors":"Rui Fan, Zhiqiang Wang, Qing Zhu","doi":"10.1145/3529466.3529482","DOIUrl":null,"url":null,"abstract":"Melanoma is the leading cause of death from skin cancer, and the number is increasing every year. However, automated segmentation of melanoma remains a challenging problem due to the great variation in shape, colour and texture of melanoma. Moreover, with the development of mobile devices, achieving higher performance segmentation on embedded devices deserves further research. To address the above issues, this paper proposes a lightweight network for skin lesion segmentation with guided learning based on the attention mechanism, which not only ensures image segmentation accuracy using an efficient feature fusion module, but also effectively reduces the complexity of the model. Extensive experiments on the ISIC2017 dataset validate that EGFNet achieves very competitive results in terms of objective metrics.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EGFNet: Efficient guided feature fusion network for skin cancer lesion segmentation\",\"authors\":\"Rui Fan, Zhiqiang Wang, Qing Zhu\",\"doi\":\"10.1145/3529466.3529482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma is the leading cause of death from skin cancer, and the number is increasing every year. However, automated segmentation of melanoma remains a challenging problem due to the great variation in shape, colour and texture of melanoma. Moreover, with the development of mobile devices, achieving higher performance segmentation on embedded devices deserves further research. To address the above issues, this paper proposes a lightweight network for skin lesion segmentation with guided learning based on the attention mechanism, which not only ensures image segmentation accuracy using an efficient feature fusion module, but also effectively reduces the complexity of the model. Extensive experiments on the ISIC2017 dataset validate that EGFNet achieves very competitive results in terms of objective metrics.\",\"PeriodicalId\":375562,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529466.3529482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

黑色素瘤是导致皮肤癌死亡的主要原因,而且这个数字每年都在增加。然而,由于黑色素瘤在形状、颜色和纹理上的巨大差异,自动分割黑色素瘤仍然是一个具有挑战性的问题。此外,随着移动设备的发展,如何在嵌入式设备上实现更高的性能分割值得进一步研究。针对上述问题,本文提出了一种基于注意机制的引导学习的皮肤病变分割轻量级网络,既利用高效的特征融合模块保证了图像分割的准确性,又有效降低了模型的复杂度。在ISIC2017数据集上的大量实验验证了EGFNet在客观指标方面取得了非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EGFNet: Efficient guided feature fusion network for skin cancer lesion segmentation
Melanoma is the leading cause of death from skin cancer, and the number is increasing every year. However, automated segmentation of melanoma remains a challenging problem due to the great variation in shape, colour and texture of melanoma. Moreover, with the development of mobile devices, achieving higher performance segmentation on embedded devices deserves further research. To address the above issues, this paper proposes a lightweight network for skin lesion segmentation with guided learning based on the attention mechanism, which not only ensures image segmentation accuracy using an efficient feature fusion module, but also effectively reduces the complexity of the model. Extensive experiments on the ISIC2017 dataset validate that EGFNet achieves very competitive results in terms of objective metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信