基于高阶统计量的马尔可夫链逆问题首次通过时间矩估计

Shi Yu, Zhang Xianda
{"title":"基于高阶统计量的马尔可夫链逆问题首次通过时间矩估计","authors":"Shi Yu, Zhang Xianda","doi":"10.1109/ICOSP.1998.770244","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical approach for estimating the moments by using higher-order cumulants when the additive noise is Gaussian colored noise. It is shown that the kth-order moments of the noise samples are only related to the variance of the noise and that the estimators have the properties of unbiasedness and congruence. A numerical simulation is performed for constructing a Markov chain of continuous time parameters. The results show the validity of this algorithm.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order statistics-based estimation of moments of first passage time for Markov chains in its reverse problem\",\"authors\":\"Shi Yu, Zhang Xianda\",\"doi\":\"10.1109/ICOSP.1998.770244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a statistical approach for estimating the moments by using higher-order cumulants when the additive noise is Gaussian colored noise. It is shown that the kth-order moments of the noise samples are only related to the variance of the noise and that the estimators have the properties of unbiasedness and congruence. A numerical simulation is performed for constructing a Markov chain of continuous time parameters. The results show the validity of this algorithm.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用高阶累积量估计加性噪声为高斯有色噪声时的矩量的统计方法。结果表明,噪声样本的k阶矩只与噪声的方差有关,估计量具有无偏性和同余性。对连续时间参数马尔可夫链的构造进行了数值模拟。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order statistics-based estimation of moments of first passage time for Markov chains in its reverse problem
This paper presents a statistical approach for estimating the moments by using higher-order cumulants when the additive noise is Gaussian colored noise. It is shown that the kth-order moments of the noise samples are only related to the variance of the noise and that the estimators have the properties of unbiasedness and congruence. A numerical simulation is performed for constructing a Markov chain of continuous time parameters. The results show the validity of this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信