G. Todorov, V. Polischuk, A. Krasteva, S. Cartaleva, A. Sargsyan, T. Vartanyan
{"title":"133Cs薄层蒸汽共振能级上的非线性共振符号反转和纵向对准","authors":"G. Todorov, V. Polischuk, A. Krasteva, S. Cartaleva, A. Sargsyan, T. Vartanyan","doi":"10.1117/12.2263622","DOIUrl":null,"url":null,"abstract":"The fluorescence and non-linear absorption spectra of Cs133 vapour in an extremely thin cell were calculated by using the perturbation theory with respect to the pumping field intensity. The problem of the atoms’ non-linear polarization was solved for arbitrary values of the total momenta of the resonance levels pumped by a linearly-polarised laser field. It was demonstrated that the spontaneous emission from the upper level affects the amplitude and sign of the lower level longitudinal alignment and results in a change of the amplitude and sign of the non-linear absorption resonance at the closed transition. The comparison of the numerical calculations with the experimental data for the D2 line of 133Cs shows a very good agreement.","PeriodicalId":355156,"journal":{"name":"International School on Quantum Electronics: Laser Physics and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear resonances sign reversal and longitudinal alignment on the resonant levels of 133Cs thin-layer vapour\",\"authors\":\"G. Todorov, V. Polischuk, A. Krasteva, S. Cartaleva, A. Sargsyan, T. Vartanyan\",\"doi\":\"10.1117/12.2263622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluorescence and non-linear absorption spectra of Cs133 vapour in an extremely thin cell were calculated by using the perturbation theory with respect to the pumping field intensity. The problem of the atoms’ non-linear polarization was solved for arbitrary values of the total momenta of the resonance levels pumped by a linearly-polarised laser field. It was demonstrated that the spontaneous emission from the upper level affects the amplitude and sign of the lower level longitudinal alignment and results in a change of the amplitude and sign of the non-linear absorption resonance at the closed transition. The comparison of the numerical calculations with the experimental data for the D2 line of 133Cs shows a very good agreement.\",\"PeriodicalId\":355156,\"journal\":{\"name\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2263622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International School on Quantum Electronics: Laser Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2263622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear resonances sign reversal and longitudinal alignment on the resonant levels of 133Cs thin-layer vapour
The fluorescence and non-linear absorption spectra of Cs133 vapour in an extremely thin cell were calculated by using the perturbation theory with respect to the pumping field intensity. The problem of the atoms’ non-linear polarization was solved for arbitrary values of the total momenta of the resonance levels pumped by a linearly-polarised laser field. It was demonstrated that the spontaneous emission from the upper level affects the amplitude and sign of the lower level longitudinal alignment and results in a change of the amplitude and sign of the non-linear absorption resonance at the closed transition. The comparison of the numerical calculations with the experimental data for the D2 line of 133Cs shows a very good agreement.