确定满足鲁棒性能约束的所有稳定分数阶PID控制器

Yung K. Lee, J. Watkins
{"title":"确定满足鲁棒性能约束的所有稳定分数阶PID控制器","authors":"Yung K. Lee, J. Watkins","doi":"10.1109/ACC.2013.6580095","DOIUrl":null,"url":null,"abstract":"This paper presents a method for finding all stabilizing fractional-order (FO) proportional-integral-derivative (PID) controllers that satisfy a robust performance constraint for a system of integer or non-integer order with a time delay. All the solutions to such FO PID controllers are calculated in the frequency domain and are given in terms of the proportional gain Kp, integral gain Ki, and derivative gain Kd. In this paper, they will be plotted on the (Kp, Ki), (Kp, Kd), and (Ki, Kd) planes. For a robust performance constraint, a weight is selected to bound all multiplicative errors resulting from parametric uncertainty and a sensitivity function weight is selected to set performance specifications. This approach provides all the possible gain parameter values of FO PID controllers that satisfy a robust performance condition. An example is given to illustrate the usefulness and effectiveness of the method.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Determination of all stabilizing fractional-order PID controllers that satisfy a robust performance constraint\",\"authors\":\"Yung K. Lee, J. Watkins\",\"doi\":\"10.1109/ACC.2013.6580095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for finding all stabilizing fractional-order (FO) proportional-integral-derivative (PID) controllers that satisfy a robust performance constraint for a system of integer or non-integer order with a time delay. All the solutions to such FO PID controllers are calculated in the frequency domain and are given in terms of the proportional gain Kp, integral gain Ki, and derivative gain Kd. In this paper, they will be plotted on the (Kp, Ki), (Kp, Kd), and (Ki, Kd) planes. For a robust performance constraint, a weight is selected to bound all multiplicative errors resulting from parametric uncertainty and a sensitivity function weight is selected to set performance specifications. This approach provides all the possible gain parameter values of FO PID controllers that satisfy a robust performance condition. An example is given to illustrate the usefulness and effectiveness of the method.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种求解具有时滞的整数阶或非整数阶系统的满足鲁棒性能约束的分数阶比例积分导数(PID)控制器的方法。这类FO PID控制器的所有解都在频域中计算,并以比例增益Kp、积分增益Ki和导数增益Kd的形式给出。在本文中,它们将绘制在(Kp, Ki), (Kp, Kd)和(Ki, Kd)平面上。为了实现鲁棒性性能约束,选择一个权值来约束由参数不确定性引起的所有乘法误差,并选择一个灵敏度函数权值来设置性能指标。该方法提供了满足鲁棒性能条件的所有可能的增益参数值。算例说明了该方法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of all stabilizing fractional-order PID controllers that satisfy a robust performance constraint
This paper presents a method for finding all stabilizing fractional-order (FO) proportional-integral-derivative (PID) controllers that satisfy a robust performance constraint for a system of integer or non-integer order with a time delay. All the solutions to such FO PID controllers are calculated in the frequency domain and are given in terms of the proportional gain Kp, integral gain Ki, and derivative gain Kd. In this paper, they will be plotted on the (Kp, Ki), (Kp, Kd), and (Ki, Kd) planes. For a robust performance constraint, a weight is selected to bound all multiplicative errors resulting from parametric uncertainty and a sensitivity function weight is selected to set performance specifications. This approach provides all the possible gain parameter values of FO PID controllers that satisfy a robust performance condition. An example is given to illustrate the usefulness and effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信