基于部分重构的DSSS通信NBI参数估计

Yongshun Zhang, Weigang Zhu, Xin Jia, Yonghua He
{"title":"基于部分重构的DSSS通信NBI参数估计","authors":"Yongshun Zhang, Weigang Zhu, Xin Jia, Yonghua He","doi":"10.1109/CISP-BMEI.2018.8633168","DOIUrl":null,"url":null,"abstract":"The existing NBI parameter estimation algorithms for DSSS communications are confined to the high sampling rate. In order to solve the problem above, the compressive sensing (CS)is applied to the NBI parameter estimation in DSSS communications. A partial reconstruction algorithm is proposed to get the NBI feature vector from the compressed signal using the different feature of DSSS signal and NBI in compressed domain and the block sparsity feature of NBI in frequency domain. Besides, an edge location estimation method is proposed to realize the NBI parameter estimation by estimating the edge of the transformed feature vector. We will achieve the NBI bandwidth estimation after we get the edge location. Reported simulation results demonstrate that the proposed methods are effective to the NBI parameter estimation in DSSS communications. The performance is mainly affected by the variety of interference intensity and compression rate. Under the condition of same interference bandwidth, the larger the interference intensity is and the greater the compression rate is, the better the interference parameter estimation performance is.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NBI Parameter Estimation in DSSS Communications Based on Partial Reconstruction\",\"authors\":\"Yongshun Zhang, Weigang Zhu, Xin Jia, Yonghua He\",\"doi\":\"10.1109/CISP-BMEI.2018.8633168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing NBI parameter estimation algorithms for DSSS communications are confined to the high sampling rate. In order to solve the problem above, the compressive sensing (CS)is applied to the NBI parameter estimation in DSSS communications. A partial reconstruction algorithm is proposed to get the NBI feature vector from the compressed signal using the different feature of DSSS signal and NBI in compressed domain and the block sparsity feature of NBI in frequency domain. Besides, an edge location estimation method is proposed to realize the NBI parameter estimation by estimating the edge of the transformed feature vector. We will achieve the NBI bandwidth estimation after we get the edge location. Reported simulation results demonstrate that the proposed methods are effective to the NBI parameter estimation in DSSS communications. The performance is mainly affected by the variety of interference intensity and compression rate. Under the condition of same interference bandwidth, the larger the interference intensity is and the greater the compression rate is, the better the interference parameter estimation performance is.\",\"PeriodicalId\":117227,\"journal\":{\"name\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2018.8633168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的用于DSSS通信的NBI参数估计算法受限于高采样率。为了解决上述问题,将压缩感知(CS)应用于DSSS通信中NBI参数的估计。利用DSSS信号与NBI在压缩域的不同特征和NBI在频域的块稀疏性特征,提出了一种从压缩信号中提取NBI特征向量的部分重构算法。此外,提出了一种边缘位置估计方法,通过估计变换后的特征向量的边缘来实现NBI参数的估计。我们将在得到边缘位置后实现NBI带宽估计。仿真结果表明,该方法对DSSS通信中NBI参数的估计是有效的。其性能主要受干扰强度和压缩率变化的影响。在干扰带宽相同的条件下,干扰强度越大,压缩率越大,干扰参数估计性能越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NBI Parameter Estimation in DSSS Communications Based on Partial Reconstruction
The existing NBI parameter estimation algorithms for DSSS communications are confined to the high sampling rate. In order to solve the problem above, the compressive sensing (CS)is applied to the NBI parameter estimation in DSSS communications. A partial reconstruction algorithm is proposed to get the NBI feature vector from the compressed signal using the different feature of DSSS signal and NBI in compressed domain and the block sparsity feature of NBI in frequency domain. Besides, an edge location estimation method is proposed to realize the NBI parameter estimation by estimating the edge of the transformed feature vector. We will achieve the NBI bandwidth estimation after we get the edge location. Reported simulation results demonstrate that the proposed methods are effective to the NBI parameter estimation in DSSS communications. The performance is mainly affected by the variety of interference intensity and compression rate. Under the condition of same interference bandwidth, the larger the interference intensity is and the greater the compression rate is, the better the interference parameter estimation performance is.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信