基于人工智能的特征选择方法在回归模型中的潜力

P. Pudil, K. Fuka, K. Beránek, P. Dvorak
{"title":"基于人工智能的特征选择方法在回归模型中的潜力","authors":"P. Pudil, K. Fuka, K. Beránek, P. Dvorak","doi":"10.1109/ICCIMA.1999.798521","DOIUrl":null,"url":null,"abstract":"Pattern recognition based on learning approaches is regarded as one of the disciplines of AI. Floating search methods, developed originally for feature selection problems in statistical pattern recognition, are applicable to a much wider class of problems outside pattern recognition. They have the potential to find an optimal subset of variables maximizing any criterion adopted for the problem at hand-eliminating the so-called nesting effect from which traditional algorithms suffer. One such application area is multiple regression, where floating search methods represent a computationally feasible alternative to classical methods for finding the optimal set of regressors.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Potential of artificial intelligence based feature selection methods in regression models\",\"authors\":\"P. Pudil, K. Fuka, K. Beránek, P. Dvorak\",\"doi\":\"10.1109/ICCIMA.1999.798521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition based on learning approaches is regarded as one of the disciplines of AI. Floating search methods, developed originally for feature selection problems in statistical pattern recognition, are applicable to a much wider class of problems outside pattern recognition. They have the potential to find an optimal subset of variables maximizing any criterion adopted for the problem at hand-eliminating the so-called nesting effect from which traditional algorithms suffer. One such application area is multiple regression, where floating search methods represent a computationally feasible alternative to classical methods for finding the optimal set of regressors.\",\"PeriodicalId\":110736,\"journal\":{\"name\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.1999.798521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于学习方法的模式识别被认为是人工智能的学科之一。浮动搜索方法最初是为统计模式识别中的特征选择问题而开发的,现在可以应用于模式识别之外的更广泛的问题。它们有可能找到一个变量的最优子集,最大化当前问题所采用的任何标准,从而消除传统算法所遭受的所谓嵌套效应。其中一个这样的应用领域是多元回归,其中浮动搜索方法代表了寻找最优回归集的经典方法的计算上可行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential of artificial intelligence based feature selection methods in regression models
Pattern recognition based on learning approaches is regarded as one of the disciplines of AI. Floating search methods, developed originally for feature selection problems in statistical pattern recognition, are applicable to a much wider class of problems outside pattern recognition. They have the potential to find an optimal subset of variables maximizing any criterion adopted for the problem at hand-eliminating the so-called nesting effect from which traditional algorithms suffer. One such application area is multiple regression, where floating search methods represent a computationally feasible alternative to classical methods for finding the optimal set of regressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信