不要轻易相乘:语音识别中声学模型假设的量化问题

D. Gillick, L. Gillick, S. Wegmann
{"title":"不要轻易相乘:语音识别中声学模型假设的量化问题","authors":"D. Gillick, L. Gillick, S. Wegmann","doi":"10.1109/ASRU.2011.6163908","DOIUrl":null,"url":null,"abstract":"We describe a series of experiments simulating data from the standard Hidden Markov Model (HMM) framework used for speech recognition. Starting with a set of test transcriptions, we begin by simulating every step of the generative process. In each subsequent experiment, we substitute a real component for a simulated component (real state durations rather than simulating from the transition models, for example), and compare the word error rates of the resulting data, thus quantifying the relative costs of each modeling assumption. A novel sampling process allows us to test the independence assumptions of the HMM, which appear to present far more serious problems than the other data/model mismatches.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Don't multiply lightly: Quantifying problems with the acoustic model assumptions in speech recognition\",\"authors\":\"D. Gillick, L. Gillick, S. Wegmann\",\"doi\":\"10.1109/ASRU.2011.6163908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a series of experiments simulating data from the standard Hidden Markov Model (HMM) framework used for speech recognition. Starting with a set of test transcriptions, we begin by simulating every step of the generative process. In each subsequent experiment, we substitute a real component for a simulated component (real state durations rather than simulating from the transition models, for example), and compare the word error rates of the resulting data, thus quantifying the relative costs of each modeling assumption. A novel sampling process allows us to test the independence assumptions of the HMM, which appear to present far more serious problems than the other data/model mismatches.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们描述了一系列模拟用于语音识别的标准隐马尔可夫模型(HMM)框架数据的实验。从一组测试转录开始,我们开始模拟生成过程的每一步。在随后的每个实验中,我们用真实组件代替模拟组件(例如,真实状态持续时间,而不是从转换模型中模拟),并比较结果数据的单词错误率,从而量化每个建模假设的相对成本。一种新颖的采样过程允许我们测试HMM的独立性假设,这些假设似乎比其他数据/模型不匹配提出了更严重的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Don't multiply lightly: Quantifying problems with the acoustic model assumptions in speech recognition
We describe a series of experiments simulating data from the standard Hidden Markov Model (HMM) framework used for speech recognition. Starting with a set of test transcriptions, we begin by simulating every step of the generative process. In each subsequent experiment, we substitute a real component for a simulated component (real state durations rather than simulating from the transition models, for example), and compare the word error rates of the resulting data, thus quantifying the relative costs of each modeling assumption. A novel sampling process allows us to test the independence assumptions of the HMM, which appear to present far more serious problems than the other data/model mismatches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信