生成对抗网络用于超快超声定位显微镜重建

Yihui Sui, Xingyi Guo, Junjin Yu, Dean Ta, Kailiang Xu
{"title":"生成对抗网络用于超快超声定位显微镜重建","authors":"Yihui Sui, Xingyi Guo, Junjin Yu, Dean Ta, Kailiang Xu","doi":"10.1109/IUS54386.2022.9957566","DOIUrl":null,"url":null,"abstract":"Ultrafast ultrasound localization microscopy (u ULM) can be used to resolve deep vasculature down to a few micrometers. After microbubble localization over hundreds of thousands of images, accurate and efficient tracking of each individual microbubble over consecutive frames is one of the crucial issues for uULM reconstruction. Continuous long acquisition still limits its clinical application. In the study, a generative adversarial nets (GAN) based deep learning approach is developed to facilitate microbubble tracking and further reduce the acquisition time of uULM.","PeriodicalId":272387,"journal":{"name":"2022 IEEE International Ultrasonics Symposium (IUS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generative Adversarial Nets for Ultrafast Ultrasound Localization Microscopy Reconstruction\",\"authors\":\"Yihui Sui, Xingyi Guo, Junjin Yu, Dean Ta, Kailiang Xu\",\"doi\":\"10.1109/IUS54386.2022.9957566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrafast ultrasound localization microscopy (u ULM) can be used to resolve deep vasculature down to a few micrometers. After microbubble localization over hundreds of thousands of images, accurate and efficient tracking of each individual microbubble over consecutive frames is one of the crucial issues for uULM reconstruction. Continuous long acquisition still limits its clinical application. In the study, a generative adversarial nets (GAN) based deep learning approach is developed to facilitate microbubble tracking and further reduce the acquisition time of uULM.\",\"PeriodicalId\":272387,\"journal\":{\"name\":\"2022 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUS54386.2022.9957566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUS54386.2022.9957566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超快超声定位显微镜(ULM)可用于分解深层血管系统到几微米。在对数十万张图像进行微泡定位后,对连续帧内的每个微泡进行准确、高效的跟踪是uULM重建的关键问题之一。持续的长时间采集仍然限制了其临床应用。在研究中,开发了一种基于生成式对抗网络(GAN)的深度学习方法,以促进微泡跟踪,并进一步缩短uULM的获取时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Nets for Ultrafast Ultrasound Localization Microscopy Reconstruction
Ultrafast ultrasound localization microscopy (u ULM) can be used to resolve deep vasculature down to a few micrometers. After microbubble localization over hundreds of thousands of images, accurate and efficient tracking of each individual microbubble over consecutive frames is one of the crucial issues for uULM reconstruction. Continuous long acquisition still limits its clinical application. In the study, a generative adversarial nets (GAN) based deep learning approach is developed to facilitate microbubble tracking and further reduce the acquisition time of uULM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信