反思性写作分析:经验确定的书面反思关键词

T. Ullmann
{"title":"反思性写作分析:经验确定的书面反思关键词","authors":"T. Ullmann","doi":"10.1145/3027385.3027394","DOIUrl":null,"url":null,"abstract":"Despite their importance for educational practice, reflective writings are still manually analysed and assessed, posing a constraint on the use of this educational technique. Recently, research started to investigate automated approaches for analysing reflective writing. Foundational to many automated approaches is the knowledge of words that are important for the genre. This research presents keywords that are specific to several categories of a reflective writing model. These keywords have been derived from eight datasets, which contain several thousand instances using the log-likelihood method. Both performance measures, the accuracy and the Cohen's κ, for these keywords were estimated with ten-fold cross validation. The results reached an accuracy of 0.78 on average for all eight categories and a fair to good interrater reliability for most categories even though it did not make use of any sophisticated rule-based mechanisms or machine learning approaches. This research contributes to the development of automated reflective writing analytics that are based on data-driven empirical foundations.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Reflective writing analytics: empirically determined keywords of written reflection\",\"authors\":\"T. Ullmann\",\"doi\":\"10.1145/3027385.3027394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their importance for educational practice, reflective writings are still manually analysed and assessed, posing a constraint on the use of this educational technique. Recently, research started to investigate automated approaches for analysing reflective writing. Foundational to many automated approaches is the knowledge of words that are important for the genre. This research presents keywords that are specific to several categories of a reflective writing model. These keywords have been derived from eight datasets, which contain several thousand instances using the log-likelihood method. Both performance measures, the accuracy and the Cohen's κ, for these keywords were estimated with ten-fold cross validation. The results reached an accuracy of 0.78 on average for all eight categories and a fair to good interrater reliability for most categories even though it did not make use of any sophisticated rule-based mechanisms or machine learning approaches. This research contributes to the development of automated reflective writing analytics that are based on data-driven empirical foundations.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3027394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

尽管反思性写作对教育实践很重要,但它们仍然是手工分析和评估的,这对这种教育技术的使用构成了限制。最近,研究开始调查分析反思性写作的自动化方法。许多自动化方法的基础是对该类型很重要的单词的知识。本研究提出了反思性写作模式的几个特定类别的关键词。这些关键词是从8个数据集中得到的,这些数据集包含数千个使用对数似然方法的实例。这两个性能指标,准确性和科恩κ,对这些关键词进行了十倍交叉验证估计。尽管没有使用任何复杂的基于规则的机制或机器学习方法,但结果在所有八个类别中平均达到了0.78的准确率,在大多数类别中也达到了相当好的解释器可靠性。这项研究有助于基于数据驱动的经验基础的自动反思写作分析的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflective writing analytics: empirically determined keywords of written reflection
Despite their importance for educational practice, reflective writings are still manually analysed and assessed, posing a constraint on the use of this educational technique. Recently, research started to investigate automated approaches for analysing reflective writing. Foundational to many automated approaches is the knowledge of words that are important for the genre. This research presents keywords that are specific to several categories of a reflective writing model. These keywords have been derived from eight datasets, which contain several thousand instances using the log-likelihood method. Both performance measures, the accuracy and the Cohen's κ, for these keywords were estimated with ten-fold cross validation. The results reached an accuracy of 0.78 on average for all eight categories and a fair to good interrater reliability for most categories even though it did not make use of any sophisticated rule-based mechanisms or machine learning approaches. This research contributes to the development of automated reflective writing analytics that are based on data-driven empirical foundations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信