求解动量空间谐振子系统的新技术

A. Ahmed, H. Hussein
{"title":"求解动量空间谐振子系统的新技术","authors":"A. Ahmed, H. Hussein","doi":"10.1063/1.5138510","DOIUrl":null,"url":null,"abstract":"Laplace transformation has been used for solving Schrodinger equation in momentum space without using integral equation (Fourier transformation) because it is much harder and more complicated. Furthermore, energy spectra and particle distributions have been demonstrated by using Schrodinger differential equation without ignoring dimensions or units. In addition, a maple program has also been considered to solve the method since it can help to pave a way for other models to work in quantum mechanics.","PeriodicalId":186251,"journal":{"name":"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New technique for solving harmonic oscillator system in momentum space\",\"authors\":\"A. Ahmed, H. Hussein\",\"doi\":\"10.1063/1.5138510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laplace transformation has been used for solving Schrodinger equation in momentum space without using integral equation (Fourier transformation) because it is much harder and more complicated. Furthermore, energy spectra and particle distributions have been demonstrated by using Schrodinger differential equation without ignoring dimensions or units. In addition, a maple program has also been considered to solve the method since it can help to pave a way for other models to work in quantum mechanics.\",\"PeriodicalId\":186251,\"journal\":{\"name\":\"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5138510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5138510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在求解动量空间中的薛定谔方程时,一直采用拉普拉斯变换而不使用积分方程(傅里叶变换),因为它更加困难和复杂。此外,利用薛定谔微分方程,在不忽略维度和单位的情况下,证明了能量谱和粒子分布。此外,一个枫程序也被认为可以解决这个方法,因为它可以帮助为其他模型在量子力学中的工作铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New technique for solving harmonic oscillator system in momentum space
Laplace transformation has been used for solving Schrodinger equation in momentum space without using integral equation (Fourier transformation) because it is much harder and more complicated. Furthermore, energy spectra and particle distributions have been demonstrated by using Schrodinger differential equation without ignoring dimensions or units. In addition, a maple program has also been considered to solve the method since it can help to pave a way for other models to work in quantum mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信