基于人工神经网络的DNA序列功能位点预测

A. Hatzigeorgiou, N. Mache, M. Reczko
{"title":"基于人工神经网络的DNA序列功能位点预测","authors":"A. Hatzigeorgiou, N. Mache, M. Reczko","doi":"10.1109/IJSIS.1996.565045","DOIUrl":null,"url":null,"abstract":"A modular system of neural networks is used to identify genes in DNA sequences of eukaryotic organisms. The identification task is decomposed into the detection of distinct signals using separate neural network modules. Such signals are coding regions, splice sites and transcription start regions (cap-site). A focus of the work is the use of back-percolation, cascade correlation, and time-delay neural networks. These give, in this particular application, better generalization than the well known backpropagation algorithm. This system achieves a prediction accuracy comparable to the traditionally designed gene identification packages and is able to produce more accurate protein sequences from the constructed gene structures.","PeriodicalId":437491,"journal":{"name":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Functional site prediction on the DNA sequence by artificial neural networks\",\"authors\":\"A. Hatzigeorgiou, N. Mache, M. Reczko\",\"doi\":\"10.1109/IJSIS.1996.565045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modular system of neural networks is used to identify genes in DNA sequences of eukaryotic organisms. The identification task is decomposed into the detection of distinct signals using separate neural network modules. Such signals are coding regions, splice sites and transcription start regions (cap-site). A focus of the work is the use of back-percolation, cascade correlation, and time-delay neural networks. These give, in this particular application, better generalization than the well known backpropagation algorithm. This system achieves a prediction accuracy comparable to the traditionally designed gene identification packages and is able to produce more accurate protein sequences from the constructed gene structures.\",\"PeriodicalId\":437491,\"journal\":{\"name\":\"Proceedings IEEE International Joint Symposia on Intelligence and Systems\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Joint Symposia on Intelligence and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJSIS.1996.565045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1996.565045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

神经网络的模块化系统被用来识别真核生物DNA序列中的基因。识别任务被分解为使用单独的神经网络模块检测不同的信号。这些信号是编码区、剪接位点和转录起始区(cap-site)。工作的重点是使用反向渗透,级联相关和延时神经网络。在这个特殊的应用中,这些算法比众所周知的反向传播算法有更好的泛化效果。该系统达到了与传统设计的基因鉴定包相当的预测精度,并且能够从构建的基因结构中产生更准确的蛋白质序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional site prediction on the DNA sequence by artificial neural networks
A modular system of neural networks is used to identify genes in DNA sequences of eukaryotic organisms. The identification task is decomposed into the detection of distinct signals using separate neural network modules. Such signals are coding regions, splice sites and transcription start regions (cap-site). A focus of the work is the use of back-percolation, cascade correlation, and time-delay neural networks. These give, in this particular application, better generalization than the well known backpropagation algorithm. This system achieves a prediction accuracy comparable to the traditionally designed gene identification packages and is able to produce more accurate protein sequences from the constructed gene structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信