{"title":"水氮共配条件下小麦形态生理特性、生化特性及产量:提高水分和氮吸收的途径","authors":"N. Ali, M. Akmal","doi":"10.5772/intechopen.94355","DOIUrl":null,"url":null,"abstract":"Drought stress is the most prominent limiting factor and abiotic stress that manipulates the physiological pathway, biochemical traits and hence negatively affects wheat crop productivity. The global nitrogen (N) recovery indicated that about two-fifths of N inputs are lost in the ecosystems through emission, denitrification, gaseous loss, leaching, surface runoff and volatilization etc. Farmers are using higher rates of N to harvest maximum yield but about 50–60% of applied N to crop field is not utilized by the plants and are lost to environment causing environmental pollution. These deleterious environmental consequences need to be reduced by efficient management of N and/or water. N-availability is often regulated by soil water; hence crop is experiencing N- and water-limitation simultaneously. There is great impetus to optimize their uptake through interconnectedness of water and N for yield determination of wheat because of the water scarcity and N losses. It is further advocate that there is need to investigate the intricate role of economizing N rate and water simultaneously for wheat crop growth, yield and backing quality may be beneficial to be investigate.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Morphophysiological Traits, Biochemical Characteristic and Productivity of Wheat under Water and Nitrogen-Colimitation: Pathways to Improve Water and N Uptake\",\"authors\":\"N. Ali, M. Akmal\",\"doi\":\"10.5772/intechopen.94355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought stress is the most prominent limiting factor and abiotic stress that manipulates the physiological pathway, biochemical traits and hence negatively affects wheat crop productivity. The global nitrogen (N) recovery indicated that about two-fifths of N inputs are lost in the ecosystems through emission, denitrification, gaseous loss, leaching, surface runoff and volatilization etc. Farmers are using higher rates of N to harvest maximum yield but about 50–60% of applied N to crop field is not utilized by the plants and are lost to environment causing environmental pollution. These deleterious environmental consequences need to be reduced by efficient management of N and/or water. N-availability is often regulated by soil water; hence crop is experiencing N- and water-limitation simultaneously. There is great impetus to optimize their uptake through interconnectedness of water and N for yield determination of wheat because of the water scarcity and N losses. It is further advocate that there is need to investigate the intricate role of economizing N rate and water simultaneously for wheat crop growth, yield and backing quality may be beneficial to be investigate.\",\"PeriodicalId\":338195,\"journal\":{\"name\":\"Abiotic Stress in Plants\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abiotic Stress in Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.94355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abiotic Stress in Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morphophysiological Traits, Biochemical Characteristic and Productivity of Wheat under Water and Nitrogen-Colimitation: Pathways to Improve Water and N Uptake
Drought stress is the most prominent limiting factor and abiotic stress that manipulates the physiological pathway, biochemical traits and hence negatively affects wheat crop productivity. The global nitrogen (N) recovery indicated that about two-fifths of N inputs are lost in the ecosystems through emission, denitrification, gaseous loss, leaching, surface runoff and volatilization etc. Farmers are using higher rates of N to harvest maximum yield but about 50–60% of applied N to crop field is not utilized by the plants and are lost to environment causing environmental pollution. These deleterious environmental consequences need to be reduced by efficient management of N and/or water. N-availability is often regulated by soil water; hence crop is experiencing N- and water-limitation simultaneously. There is great impetus to optimize their uptake through interconnectedness of water and N for yield determination of wheat because of the water scarcity and N losses. It is further advocate that there is need to investigate the intricate role of economizing N rate and water simultaneously for wheat crop growth, yield and backing quality may be beneficial to be investigate.