基于弱监督深度学习的颅内出血定位

Jakub Nemček, Tomáš Vičar, Roman Jakubícek
{"title":"基于弱监督深度学习的颅内出血定位","authors":"Jakub Nemček, Tomáš Vičar, Roman Jakubícek","doi":"10.5220/0010825000003123","DOIUrl":null,"url":null,"abstract":"Intracranial hemorrhage is a life-threatening disease, which requires fast medical intervention. Owing to the duration of data annotation, head CT images are usually available only with slice-level labeling. This paper presents a weakly supervised method of precise hemorrhage localization in axial slices using only position-free labels, which is based on multiple instance learning. An algorithm is introduced that generates hemorrhage likelihood maps and finds the coordinates of bleeding. The Dice coefficient of 58.08 % is achieved on data from a publicly available dataset.","PeriodicalId":162397,"journal":{"name":"Bioimaging (Bristol. Print)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weakly supervised deep learning-based intracranial hemorrhage localization\",\"authors\":\"Jakub Nemček, Tomáš Vičar, Roman Jakubícek\",\"doi\":\"10.5220/0010825000003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracranial hemorrhage is a life-threatening disease, which requires fast medical intervention. Owing to the duration of data annotation, head CT images are usually available only with slice-level labeling. This paper presents a weakly supervised method of precise hemorrhage localization in axial slices using only position-free labels, which is based on multiple instance learning. An algorithm is introduced that generates hemorrhage likelihood maps and finds the coordinates of bleeding. The Dice coefficient of 58.08 % is achieved on data from a publicly available dataset.\",\"PeriodicalId\":162397,\"journal\":{\"name\":\"Bioimaging (Bristol. Print)\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging (Bristol. Print)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010825000003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging (Bristol. Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010825000003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

颅内出血是一种危及生命的疾病,需要快速的医疗干预。由于数据标注时间较长,通常只能对头部CT图像进行切片级标注。提出了一种基于多实例学习的、仅使用无位置标记的轴向切片出血精确定位的弱监督方法。介绍了一种生成出血可能性图和寻找出血坐标的算法。骰子系数58.08%是在一个公开可用的数据集上实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly supervised deep learning-based intracranial hemorrhage localization
Intracranial hemorrhage is a life-threatening disease, which requires fast medical intervention. Owing to the duration of data annotation, head CT images are usually available only with slice-level labeling. This paper presents a weakly supervised method of precise hemorrhage localization in axial slices using only position-free labels, which is based on multiple instance learning. An algorithm is introduced that generates hemorrhage likelihood maps and finds the coordinates of bleeding. The Dice coefficient of 58.08 % is achieved on data from a publicly available dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信