基准知识辅助克里格自动空间插值风测量

Z. Zlatev, S. Middleton, G. Veres
{"title":"基准知识辅助克里格自动空间插值风测量","authors":"Z. Zlatev, S. Middleton, G. Veres","doi":"10.1109/ICIF.2010.5711918","DOIUrl":null,"url":null,"abstract":"We have benchmarked a novel knowledge-assisted kriging algorithm that allows regions of spatial cohesion to be specified and variograms calculated for each region. The variogram calculation itself is automated and spatial regions created via offline automated segmentation of either expert-drawn Google Earth polygons or NASA altitude data. Our use-case is to create interpolated wind maps for input into a bathing water quality model of microbial contamination. We benchmark our knowledge-assisted kriging algorithm against 7 other algorithms on UK met-office wind data (189 sensors). Our wind estimation results are comparable to standard ordinary kriging using variograms created by an expert. When using spatial segmentation we find our kriging error maps reflect better the known spatial features of the interpolated phenomenon. These results are very promising for an automated approach allowing on-demand datasets selection and real-time interpolation of previously unknown measurements. Automation is important in progressing towards a pan-European interpolation service capability.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Benchmarking knowledge-assisted kriging for automated spatial interpolation of wind measurements\",\"authors\":\"Z. Zlatev, S. Middleton, G. Veres\",\"doi\":\"10.1109/ICIF.2010.5711918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have benchmarked a novel knowledge-assisted kriging algorithm that allows regions of spatial cohesion to be specified and variograms calculated for each region. The variogram calculation itself is automated and spatial regions created via offline automated segmentation of either expert-drawn Google Earth polygons or NASA altitude data. Our use-case is to create interpolated wind maps for input into a bathing water quality model of microbial contamination. We benchmark our knowledge-assisted kriging algorithm against 7 other algorithms on UK met-office wind data (189 sensors). Our wind estimation results are comparable to standard ordinary kriging using variograms created by an expert. When using spatial segmentation we find our kriging error maps reflect better the known spatial features of the interpolated phenomenon. These results are very promising for an automated approach allowing on-demand datasets selection and real-time interpolation of previously unknown measurements. Automation is important in progressing towards a pan-European interpolation service capability.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5711918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们对一种新的知识辅助克里格算法进行了基准测试,该算法允许指定空间内聚区域并计算每个区域的变异函数。变异函数计算本身是自动化的,空间区域是通过离线自动分割专家绘制的Google Earth多边形或NASA高度数据创建的。我们的用例是创建内插风图,用于输入洗浴水质微生物污染模型。我们将我们的知识辅助克里格算法与其他7种基于英国气象局风数据(189个传感器)的算法进行了基准测试。我们的风估计结果与使用由专家创建的变分图的标准普通克里格法相当。当使用空间分割时,我们发现我们的克里格误差图更好地反映了插值现象的已知空间特征。这些结果对于一种允许按需选择数据集和实时插值以前未知测量的自动化方法是非常有希望的。自动化在实现泛欧洲插值服务能力的过程中非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking knowledge-assisted kriging for automated spatial interpolation of wind measurements
We have benchmarked a novel knowledge-assisted kriging algorithm that allows regions of spatial cohesion to be specified and variograms calculated for each region. The variogram calculation itself is automated and spatial regions created via offline automated segmentation of either expert-drawn Google Earth polygons or NASA altitude data. Our use-case is to create interpolated wind maps for input into a bathing water quality model of microbial contamination. We benchmark our knowledge-assisted kriging algorithm against 7 other algorithms on UK met-office wind data (189 sensors). Our wind estimation results are comparable to standard ordinary kriging using variograms created by an expert. When using spatial segmentation we find our kriging error maps reflect better the known spatial features of the interpolated phenomenon. These results are very promising for an automated approach allowing on-demand datasets selection and real-time interpolation of previously unknown measurements. Automation is important in progressing towards a pan-European interpolation service capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信