Q. Liang, Li Mei, Wanneng Wu, Wei Sun, Yaonan Wang, Dan Zhang
{"title":"基于R-FCN和Soft-NMS的运动视频篮球自动检测","authors":"Q. Liang, Li Mei, Wanneng Wu, Wei Sun, Yaonan Wang, Dan Zhang","doi":"10.1145/3351917.3351970","DOIUrl":null,"url":null,"abstract":"In basketball videos, the ball is always so small in the camera that its appearance feature is hard to be extracted. In this paper, we introduce a deep-learning technology to detect the basketball. Specifically, we train our basketball detection model based on the Region-based Fully Convolutional Networks (R-FCN) which uses the fully convolutional Residual Network (ResNet) as the backbone network. What's more, we apply some new techniques including Online Hard Example Mining (OHEM), Soft-NMS and multi-scale training strategy to achieve higher detection accuracy. In detail, the OHEM method can reduce the cost of fine-tuning during training by calculating the loss of the RoIs. Soft-NMS can reduce the false positive rate by decreasing the object detection score between the overlap object. And the multi-scale training can improve the detection performance by receiving the good feature from the object with different scale. Finally, we achieve a mean average precision (mAP) value of 89.7% on a public basketball dataset. It proves that applying the deep-learning approach to basketball detection is effective.","PeriodicalId":367885,"journal":{"name":"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering","volume":"480 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic Basketball Detection in Sport Video Based on R-FCN and Soft-NMS\",\"authors\":\"Q. Liang, Li Mei, Wanneng Wu, Wei Sun, Yaonan Wang, Dan Zhang\",\"doi\":\"10.1145/3351917.3351970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In basketball videos, the ball is always so small in the camera that its appearance feature is hard to be extracted. In this paper, we introduce a deep-learning technology to detect the basketball. Specifically, we train our basketball detection model based on the Region-based Fully Convolutional Networks (R-FCN) which uses the fully convolutional Residual Network (ResNet) as the backbone network. What's more, we apply some new techniques including Online Hard Example Mining (OHEM), Soft-NMS and multi-scale training strategy to achieve higher detection accuracy. In detail, the OHEM method can reduce the cost of fine-tuning during training by calculating the loss of the RoIs. Soft-NMS can reduce the false positive rate by decreasing the object detection score between the overlap object. And the multi-scale training can improve the detection performance by receiving the good feature from the object with different scale. Finally, we achieve a mean average precision (mAP) value of 89.7% on a public basketball dataset. It proves that applying the deep-learning approach to basketball detection is effective.\",\"PeriodicalId\":367885,\"journal\":{\"name\":\"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering\",\"volume\":\"480 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351917.3351970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351917.3351970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Basketball Detection in Sport Video Based on R-FCN and Soft-NMS
In basketball videos, the ball is always so small in the camera that its appearance feature is hard to be extracted. In this paper, we introduce a deep-learning technology to detect the basketball. Specifically, we train our basketball detection model based on the Region-based Fully Convolutional Networks (R-FCN) which uses the fully convolutional Residual Network (ResNet) as the backbone network. What's more, we apply some new techniques including Online Hard Example Mining (OHEM), Soft-NMS and multi-scale training strategy to achieve higher detection accuracy. In detail, the OHEM method can reduce the cost of fine-tuning during training by calculating the loss of the RoIs. Soft-NMS can reduce the false positive rate by decreasing the object detection score between the overlap object. And the multi-scale training can improve the detection performance by receiving the good feature from the object with different scale. Finally, we achieve a mean average precision (mAP) value of 89.7% on a public basketball dataset. It proves that applying the deep-learning approach to basketball detection is effective.