{"title":"条形SAR自动对焦的新方法","authors":"D. Wahl, C. V. Jakowatz, P. Thompson, D. Ghiglia","doi":"10.1109/DSP.1994.379875","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how certain concepts from the Phase Gradient Autofocus (PGA) algorithm for automated refocus of spotlight mode SAR imagery may be used to design a similar algorithm that applies to SAR imagery formed in the conventional strip-mapping mode. The algorithm derivation begins with the traditional view of strip-map image formation as convolution (compression) using a linear FM chirp sequence. The appropriate analogies and modifications to the spotlight mode case are used to describe a working algorithm for strip-map autofocus.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"New approach to strip-map SAR autofocus\",\"authors\":\"D. Wahl, C. V. Jakowatz, P. Thompson, D. Ghiglia\",\"doi\":\"10.1109/DSP.1994.379875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates how certain concepts from the Phase Gradient Autofocus (PGA) algorithm for automated refocus of spotlight mode SAR imagery may be used to design a similar algorithm that applies to SAR imagery formed in the conventional strip-mapping mode. The algorithm derivation begins with the traditional view of strip-map image formation as convolution (compression) using a linear FM chirp sequence. The appropriate analogies and modifications to the spotlight mode case are used to describe a working algorithm for strip-map autofocus.<<ETX>>\",\"PeriodicalId\":189083,\"journal\":{\"name\":\"Proceedings of IEEE 6th Digital Signal Processing Workshop\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 6th Digital Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP.1994.379875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper demonstrates how certain concepts from the Phase Gradient Autofocus (PGA) algorithm for automated refocus of spotlight mode SAR imagery may be used to design a similar algorithm that applies to SAR imagery formed in the conventional strip-mapping mode. The algorithm derivation begins with the traditional view of strip-map image formation as convolution (compression) using a linear FM chirp sequence. The appropriate analogies and modifications to the spotlight mode case are used to describe a working algorithm for strip-map autofocus.<>