用于欺骗检测的δ和时差倒谱特征的声心理掩蔽

Sinead V. Fernandes, M. S. Ullah
{"title":"用于欺骗检测的δ和时差倒谱特征的声心理掩蔽","authors":"Sinead V. Fernandes, M. S. Ullah","doi":"10.1109/UEMCON51285.2020.9298117","DOIUrl":null,"url":null,"abstract":"This paper presents the test results of analyzing mel frequency cepstrum coefficient (MFCC), delta and difference cepstrum features to detect and distinguish the truthful and deceptive speech. The features are extracted based on the psychoacoustic masking property of human speech and how it is perceived. Truthful and deceptive speeches are preset based off a guilty male speaker in police custody. Delta cepstrum and time-difference cepstrum features at triangular critical bands filter and a neural network show the distinctions that determine whether an utterance is truthful or deceptive. In this paper, we analyze the extracted MFCC, delta cepstrum and time-difference cepstrum features to see how stress in speech accurately conveys human speech emotion and deception. Finally, we feed the data into an artificial neural network model to test out the results.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phychoacoustic Masking of Delta and Time -Difference Cepstrum Features for Deception Detection\",\"authors\":\"Sinead V. Fernandes, M. S. Ullah\",\"doi\":\"10.1109/UEMCON51285.2020.9298117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the test results of analyzing mel frequency cepstrum coefficient (MFCC), delta and difference cepstrum features to detect and distinguish the truthful and deceptive speech. The features are extracted based on the psychoacoustic masking property of human speech and how it is perceived. Truthful and deceptive speeches are preset based off a guilty male speaker in police custody. Delta cepstrum and time-difference cepstrum features at triangular critical bands filter and a neural network show the distinctions that determine whether an utterance is truthful or deceptive. In this paper, we analyze the extracted MFCC, delta cepstrum and time-difference cepstrum features to see how stress in speech accurately conveys human speech emotion and deception. Finally, we feed the data into an artificial neural network model to test out the results.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了通过分析频率倒频谱系数(MFCC)、δ和差倒频谱特征来检测和区分真假语音的测试结果。这些特征是基于人类语音的心理声掩蔽特性及其感知方式提取的。真实和欺骗性的演讲都是基于一个被警察拘留的有罪的男性演讲者而预设的。三角临界带上的δ倒谱和时差倒谱特征通过滤波和神经网络显示了判断话语是真实还是欺骗性的区别。在本文中,我们分析提取的MFCC、delta倒谱和时差倒谱特征,以了解语音中的压力如何准确地传达人类的语音情感和欺骗。最后,我们将数据输入人工神经网络模型来检验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phychoacoustic Masking of Delta and Time -Difference Cepstrum Features for Deception Detection
This paper presents the test results of analyzing mel frequency cepstrum coefficient (MFCC), delta and difference cepstrum features to detect and distinguish the truthful and deceptive speech. The features are extracted based on the psychoacoustic masking property of human speech and how it is perceived. Truthful and deceptive speeches are preset based off a guilty male speaker in police custody. Delta cepstrum and time-difference cepstrum features at triangular critical bands filter and a neural network show the distinctions that determine whether an utterance is truthful or deceptive. In this paper, we analyze the extracted MFCC, delta cepstrum and time-difference cepstrum features to see how stress in speech accurately conveys human speech emotion and deception. Finally, we feed the data into an artificial neural network model to test out the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信