扩展GLOBDEF框架,支持各种数据格式的语义增强

Maria Nisheva-Pavlova, A. Alexandrov
{"title":"扩展GLOBDEF框架,支持各种数据格式的语义增强","authors":"Maria Nisheva-Pavlova, A. Alexandrov","doi":"10.1504/ijmso.2020.10030301","DOIUrl":null,"url":null,"abstract":"Semantic enhancement links sections of data files with well-described concepts from some knowledge domain. This allows for further automated reasoning about that data and can be especially useful for extracting value from Big Data. Most of the available enhancement tools focus on specific enhancement needs and data types. In this paper we present our efforts to expand the GLOBDEF framework, introduced in an earlier work, which aims to find a way for processing of large amounts of data and enhancing the data automatically. The framework is designed to leverage a variety of external enhancement tools and has no limitations on the format of the enhanced data. We demonstrate how the framework behaves on a mixed data set of texts and images and explain how an image can be semantically enhanced with a simple automated combination of an object recogniser and a text-based automated enhancer.","PeriodicalId":111629,"journal":{"name":"Int. J. Metadata Semant. Ontologies","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extending the GLOBDEF framework with support for semantic enhancement of various data formats\",\"authors\":\"Maria Nisheva-Pavlova, A. Alexandrov\",\"doi\":\"10.1504/ijmso.2020.10030301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic enhancement links sections of data files with well-described concepts from some knowledge domain. This allows for further automated reasoning about that data and can be especially useful for extracting value from Big Data. Most of the available enhancement tools focus on specific enhancement needs and data types. In this paper we present our efforts to expand the GLOBDEF framework, introduced in an earlier work, which aims to find a way for processing of large amounts of data and enhancing the data automatically. The framework is designed to leverage a variety of external enhancement tools and has no limitations on the format of the enhanced data. We demonstrate how the framework behaves on a mixed data set of texts and images and explain how an image can be semantically enhanced with a simple automated combination of an object recogniser and a text-based automated enhancer.\",\"PeriodicalId\":111629,\"journal\":{\"name\":\"Int. J. Metadata Semant. Ontologies\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Metadata Semant. Ontologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmso.2020.10030301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Metadata Semant. Ontologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmso.2020.10030301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

语义增强将数据文件的部分与来自某个知识领域的描述良好的概念链接起来。这允许对数据进行进一步的自动化推理,对于从大数据中提取价值尤其有用。大多数可用的增强工具都侧重于特定的增强需求和数据类型。在本文中,我们介绍了我们对早期工作中介绍的GLOBDEF框架的扩展努力,该框架旨在找到一种处理大量数据并自动增强数据的方法。该框架旨在利用各种外部增强工具,并且对增强数据的格式没有限制。我们演示了框架如何在文本和图像的混合数据集上表现,并解释了如何通过对象识别器和基于文本的自动增强器的简单自动组合来增强图像的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the GLOBDEF framework with support for semantic enhancement of various data formats
Semantic enhancement links sections of data files with well-described concepts from some knowledge domain. This allows for further automated reasoning about that data and can be especially useful for extracting value from Big Data. Most of the available enhancement tools focus on specific enhancement needs and data types. In this paper we present our efforts to expand the GLOBDEF framework, introduced in an earlier work, which aims to find a way for processing of large amounts of data and enhancing the data automatically. The framework is designed to leverage a variety of external enhancement tools and has no limitations on the format of the enhanced data. We demonstrate how the framework behaves on a mixed data set of texts and images and explain how an image can be semantically enhanced with a simple automated combination of an object recogniser and a text-based automated enhancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信