一阶微分方程线性Sylvester系统的稳定性分析

Kasi Viswanadh V Kanuri, SriRam Bhagavathula, K. Murty
{"title":"一阶微分方程线性Sylvester系统的稳定性分析","authors":"Kasi Viswanadh V Kanuri, SriRam Bhagavathula, K. Murty","doi":"10.18535/IJECS/V9I11.4544","DOIUrl":null,"url":null,"abstract":"In this paper, we establish stability criteria of the linear Sylvester system of matrix differential equation using the new concept of bounded solutions and deduce the existence of Ψ-bounded solutions as a particular case.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stability Analysis of Linear Sylvester System of First Order Differential Equations\",\"authors\":\"Kasi Viswanadh V Kanuri, SriRam Bhagavathula, K. Murty\",\"doi\":\"10.18535/IJECS/V9I11.4544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish stability criteria of the linear Sylvester system of matrix differential equation using the new concept of bounded solutions and deduce the existence of Ψ-bounded solutions as a particular case.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/IJECS/V9I11.4544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/IJECS/V9I11.4544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用有界解的新概念,建立了线性Sylvester矩阵微分方程系统的稳定性判据,并在特殊情况下推导了Ψ-bounded解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis of Linear Sylvester System of First Order Differential Equations
In this paper, we establish stability criteria of the linear Sylvester system of matrix differential equation using the new concept of bounded solutions and deduce the existence of Ψ-bounded solutions as a particular case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信