一种新型时空插值算法及其在COVID-19大流行中的应用

Junzhe Cai, P. Revesz
{"title":"一种新型时空插值算法及其在COVID-19大流行中的应用","authors":"Junzhe Cai, P. Revesz","doi":"10.1145/3410566.3410602","DOIUrl":null,"url":null,"abstract":"This paper describes several interpolation methods for predicting the number of cases of the COVID-19 pandemic. The interpolation methods include some well-known temporal interpolation algorithms including Lagrange interpolation, cubic spline interpolation, and exponential decay interpolation. These temporal interpolation algorithms enable the interpolation of the COVID-19 cases at locations where measures on prior days are available. However, pandemics are not purely temporal but spatio-temporal phenomena. Therefore, the neighboring locations need to be considered too in order to derive accurate interpolation values for future days. This paper introduces a novel spatio-temporal interpolation algorithm that is shown to be better than any purely temporal interpolation algorithm in predicting the COVID-19 cases in the continental United States. In particular, the novel spatio-temporal interpolation method achieves a mean absolute error of 8.44 cases over a million people when predicting two days ahead the number of cases of the COVID-19 pandemic.","PeriodicalId":137708,"journal":{"name":"Proceedings of the 24th Symposium on International Database Engineering & Applications","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel spatio-temporal interpolation algorithm and its application to the COVID-19 pandemic\",\"authors\":\"Junzhe Cai, P. Revesz\",\"doi\":\"10.1145/3410566.3410602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes several interpolation methods for predicting the number of cases of the COVID-19 pandemic. The interpolation methods include some well-known temporal interpolation algorithms including Lagrange interpolation, cubic spline interpolation, and exponential decay interpolation. These temporal interpolation algorithms enable the interpolation of the COVID-19 cases at locations where measures on prior days are available. However, pandemics are not purely temporal but spatio-temporal phenomena. Therefore, the neighboring locations need to be considered too in order to derive accurate interpolation values for future days. This paper introduces a novel spatio-temporal interpolation algorithm that is shown to be better than any purely temporal interpolation algorithm in predicting the COVID-19 cases in the continental United States. In particular, the novel spatio-temporal interpolation method achieves a mean absolute error of 8.44 cases over a million people when predicting two days ahead the number of cases of the COVID-19 pandemic.\",\"PeriodicalId\":137708,\"journal\":{\"name\":\"Proceedings of the 24th Symposium on International Database Engineering & Applications\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th Symposium on International Database Engineering & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410566.3410602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th Symposium on International Database Engineering & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410566.3410602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了几种预测COVID-19大流行病例数的插值方法。插值方法包括拉格朗日插值、三次样条插值和指数衰减插值等时间插值算法。这些时间插值算法能够在有前几天测量数据的地点插值COVID-19病例。然而,大流行病不是纯粹的时间现象,而是时空现象。因此,相邻的位置也需要考虑,以便为未来的日子获得准确的插值值。本文介绍了一种新的时空插值算法,该算法在预测美国大陆COVID-19病例方面优于任何纯粹的时间插值算法。特别是,该方法在提前两天预测新冠肺炎病例数时,平均绝对误差为8.44例/百万人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel spatio-temporal interpolation algorithm and its application to the COVID-19 pandemic
This paper describes several interpolation methods for predicting the number of cases of the COVID-19 pandemic. The interpolation methods include some well-known temporal interpolation algorithms including Lagrange interpolation, cubic spline interpolation, and exponential decay interpolation. These temporal interpolation algorithms enable the interpolation of the COVID-19 cases at locations where measures on prior days are available. However, pandemics are not purely temporal but spatio-temporal phenomena. Therefore, the neighboring locations need to be considered too in order to derive accurate interpolation values for future days. This paper introduces a novel spatio-temporal interpolation algorithm that is shown to be better than any purely temporal interpolation algorithm in predicting the COVID-19 cases in the continental United States. In particular, the novel spatio-temporal interpolation method achieves a mean absolute error of 8.44 cases over a million people when predicting two days ahead the number of cases of the COVID-19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信