{"title":"基于共识的分布式聚类收敛性分析","authors":"P. Forero, A. Cano, G. Giannakis","doi":"10.1109/ICASSP.2010.5495344","DOIUrl":null,"url":null,"abstract":"This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence analysis of consensus-based distributed clustering\",\"authors\":\"P. Forero, A. Cano, G. Giannakis\",\"doi\":\"10.1109/ICASSP.2010.5495344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5495344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence analysis of consensus-based distributed clustering
This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.