汽车气门弹簧的变形失效

{"title":"汽车气门弹簧的变形失效","authors":"","doi":"10.31399/asm.fach.modes.c0092131","DOIUrl":null,"url":null,"abstract":"\n The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distortion Failure of an Automotive Valve Spring\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.modes.c0092131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.\",\"PeriodicalId\":231268,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.modes.c0092131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0092131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汽车的发动机在运行几千英里后失去动力和压缩力,发出不均匀的排气声。在拆卸发动机时,发现其中一个排气阀上的外弹簧太短,无法正常工作。从同一发动机的另一个气缸中取出的短钢弹簧和外弹簧(都是专利的高碳钢丝)在实验室进行了检查,以确定为什么一个变形而另一个没有。调查(目视检查、微观结构检查和硬度测试)支持这样的结论,即发动机故障是因为其中一个排气阀弹簧在使用中达到了25%的设定。由于不适当的微观结构(原共析铁氧体)和较高的工作温度的共同作用,弹簧材料发生了松弛。建议包括使用调质钢代替专利和冷拔钢,或使用更昂贵的铬钒合金钢代替普通碳钢;铬钒钢也需要淬火和回火。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distortion Failure of an Automotive Valve Spring
The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信