模塑件漆面缺陷的鲁棒检测

Cole Tarry, Michael Stachowsky, M. Moussa
{"title":"模塑件漆面缺陷的鲁棒检测","authors":"Cole Tarry, Michael Stachowsky, M. Moussa","doi":"10.1109/CRV.2014.48","DOIUrl":null,"url":null,"abstract":"A method for detecting local defects in moulded plastic parts is presented. The method uses deflectometry to produce a contrast enhanced image that is later processed in a novel algorithm. The method operates without the need for accurate mechanical models and is robust to changes in image resolution. Experimental results show that the method can detect subtle defects with over 90% accuracy on most parts.","PeriodicalId":385422,"journal":{"name":"2014 Canadian Conference on Computer and Robot Vision","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Robust Detection of Paint Defects in Moulded Plastic Parts\",\"authors\":\"Cole Tarry, Michael Stachowsky, M. Moussa\",\"doi\":\"10.1109/CRV.2014.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for detecting local defects in moulded plastic parts is presented. The method uses deflectometry to produce a contrast enhanced image that is later processed in a novel algorithm. The method operates without the need for accurate mechanical models and is robust to changes in image resolution. Experimental results show that the method can detect subtle defects with over 90% accuracy on most parts.\",\"PeriodicalId\":385422,\"journal\":{\"name\":\"2014 Canadian Conference on Computer and Robot Vision\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2014.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种检测模塑件局部缺陷的方法。该方法使用偏转术来产生对比度增强的图像,该图像随后在一种新的算法中进行处理。该方法不需要精确的力学模型,并且对图像分辨率的变化具有鲁棒性。实验结果表明,该方法对大多数零件的细微缺陷检测准确率在90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Detection of Paint Defects in Moulded Plastic Parts
A method for detecting local defects in moulded plastic parts is presented. The method uses deflectometry to produce a contrast enhanced image that is later processed in a novel algorithm. The method operates without the need for accurate mechanical models and is robust to changes in image resolution. Experimental results show that the method can detect subtle defects with over 90% accuracy on most parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信