基于粒子群优化技术的网表双分区

S. S. Gill, R. Chandel, A. Chandel
{"title":"基于粒子群优化技术的网表双分区","authors":"S. S. Gill, R. Chandel, A. Chandel","doi":"10.1504/IJAISC.2012.048178","DOIUrl":null,"url":null,"abstract":"In this paper circuit netlist bipartitioning using particle swarm optimisation technique is presented. Particle swarm optimisation is a powerful evolutionary computation technique for global search and optimisation. The circuit netlist is partitioned into two partitions such that the number of interconnections between the partitions (cutsize) is minimised. Results obtained show the versatility of the proposed soft computing method in solving non polynomial hard problems like circuit netlist partitioning.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Netlist bipartitioning using particle swarm optimisation technique\",\"authors\":\"S. S. Gill, R. Chandel, A. Chandel\",\"doi\":\"10.1504/IJAISC.2012.048178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper circuit netlist bipartitioning using particle swarm optimisation technique is presented. Particle swarm optimisation is a powerful evolutionary computation technique for global search and optimisation. The circuit netlist is partitioned into two partitions such that the number of interconnections between the partitions (cutsize) is minimised. Results obtained show the versatility of the proposed soft computing method in solving non polynomial hard problems like circuit netlist partitioning.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2012.048178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2012.048178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于粒子群优化技术的电路网表双分区方法。粒子群优化是一种强大的全局搜索和优化进化计算技术。电路网络表被划分为两个分区,使得分区之间的互连数量(cutsize)被最小化。结果表明,所提出的软计算方法在解决电路网表划分等非多项式难题方面具有通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Netlist bipartitioning using particle swarm optimisation technique
In this paper circuit netlist bipartitioning using particle swarm optimisation technique is presented. Particle swarm optimisation is a powerful evolutionary computation technique for global search and optimisation. The circuit netlist is partitioned into two partitions such that the number of interconnections between the partitions (cutsize) is minimised. Results obtained show the versatility of the proposed soft computing method in solving non polynomial hard problems like circuit netlist partitioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信