{"title":"在预测性Web使用挖掘任务中使用顺序和非顺序模式","authors":"B. Mobasher, H. Dai, Tao Luo, M. Nakagawa","doi":"10.1109/ICDM.2002.1184025","DOIUrl":null,"url":null,"abstract":"We describe an efficient framework for Web personalization based on sequential and non-sequential pattern discovery from usage data. Our experimental results performed on real usage data indicate that more restrictive patterns, such as contiguous sequential patterns (e.g., frequent navigational paths) are more suitable for predictive tasks, such as Web prefetching, (which involve predicting which item is accessed next by a user), while less constrained patterns, such as frequent item sets or general sequential patterns are more effective alternatives in the context of Web personalization and recommender systems.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"Using sequential and non-sequential patterns in predictive Web usage mining tasks\",\"authors\":\"B. Mobasher, H. Dai, Tao Luo, M. Nakagawa\",\"doi\":\"10.1109/ICDM.2002.1184025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an efficient framework for Web personalization based on sequential and non-sequential pattern discovery from usage data. Our experimental results performed on real usage data indicate that more restrictive patterns, such as contiguous sequential patterns (e.g., frequent navigational paths) are more suitable for predictive tasks, such as Web prefetching, (which involve predicting which item is accessed next by a user), while less constrained patterns, such as frequent item sets or general sequential patterns are more effective alternatives in the context of Web personalization and recommender systems.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1184025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using sequential and non-sequential patterns in predictive Web usage mining tasks
We describe an efficient framework for Web personalization based on sequential and non-sequential pattern discovery from usage data. Our experimental results performed on real usage data indicate that more restrictive patterns, such as contiguous sequential patterns (e.g., frequent navigational paths) are more suitable for predictive tasks, such as Web prefetching, (which involve predicting which item is accessed next by a user), while less constrained patterns, such as frequent item sets or general sequential patterns are more effective alternatives in the context of Web personalization and recommender systems.