{"title":"速率兼容的非二进制LDPC码与乘法重复码连接","authors":"K. Kasai, D. Declercq, C. Poulliat, K. Sakaniwa","doi":"10.1109/ISIT.2010.5513615","DOIUrl":null,"url":null,"abstract":"We propose non-binary LDPC codes concatenated with multiplicative repetition codes. To the best of the authors' knowledge, for the transmissions over the memoryless binary-input output-symmetric channels, 2m-ary the (2,dc)-regular LDPC code for m ∼ 8 and dc ≥ 3 is the best code so far among codes with moderate code length. By multiplicatively repeating the 2m-ary (2,3)-regular LDPC code of rate ⅓, we construct rate-compatible codes of lower rates 1/6,1/9,1/12,…. Surprisingly, such simple low-rate codes outperform the best low-rate binary codes so far.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Rate-compatible non-binary LDPC codes concatenated with multiplicative repetition codes\",\"authors\":\"K. Kasai, D. Declercq, C. Poulliat, K. Sakaniwa\",\"doi\":\"10.1109/ISIT.2010.5513615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose non-binary LDPC codes concatenated with multiplicative repetition codes. To the best of the authors' knowledge, for the transmissions over the memoryless binary-input output-symmetric channels, 2m-ary the (2,dc)-regular LDPC code for m ∼ 8 and dc ≥ 3 is the best code so far among codes with moderate code length. By multiplicatively repeating the 2m-ary (2,3)-regular LDPC code of rate ⅓, we construct rate-compatible codes of lower rates 1/6,1/9,1/12,…. Surprisingly, such simple low-rate codes outperform the best low-rate binary codes so far.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate-compatible non-binary LDPC codes concatenated with multiplicative repetition codes
We propose non-binary LDPC codes concatenated with multiplicative repetition codes. To the best of the authors' knowledge, for the transmissions over the memoryless binary-input output-symmetric channels, 2m-ary the (2,dc)-regular LDPC code for m ∼ 8 and dc ≥ 3 is the best code so far among codes with moderate code length. By multiplicatively repeating the 2m-ary (2,3)-regular LDPC code of rate ⅓, we construct rate-compatible codes of lower rates 1/6,1/9,1/12,…. Surprisingly, such simple low-rate codes outperform the best low-rate binary codes so far.