{"title":"医药产品高效配送的多旅行商问题的演化方法","authors":"Emre Kocyigit, O. K. Sahingoz, B. Diri","doi":"10.1109/ICEE49691.2020.9249926","DOIUrl":null,"url":null,"abstract":"Considerable growth of computer science has created novel solutions for variable problem fields and has increased the efficiency of available solutions. Evolutionary algorithms are quite successful in dealing with real-world problems that require optimization. In this article, we implemented a Genetic Algorithm that is well known evolutionary algorithm in order to provide an efficient solution for the Distribution of Pharmaceutical Products, which is a vital optimization problem, especially in situations such as a pandemic. The Multiple Traveling Salesman Problem approach was used to distribute pharmaceutical products as soon as possible. Moreover, we strengthened our proposal algorithm with 2-Opt Algorithm to get optimal results in earlier iterations. Different datasets from a library were applied to measure the quality of solutions and computation time. At the end of the work, we observed that our proposed algorithm generates successful solutions in an acceptable running time. This study will be extended with a new mutation concept as future work.","PeriodicalId":250276,"journal":{"name":"2020 International Conference on Electrical Engineering (ICEE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Evolutionary Approach to Multiple Traveling Salesman Problem for Efficient Distribution of Pharmaceutical Products\",\"authors\":\"Emre Kocyigit, O. K. Sahingoz, B. Diri\",\"doi\":\"10.1109/ICEE49691.2020.9249926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considerable growth of computer science has created novel solutions for variable problem fields and has increased the efficiency of available solutions. Evolutionary algorithms are quite successful in dealing with real-world problems that require optimization. In this article, we implemented a Genetic Algorithm that is well known evolutionary algorithm in order to provide an efficient solution for the Distribution of Pharmaceutical Products, which is a vital optimization problem, especially in situations such as a pandemic. The Multiple Traveling Salesman Problem approach was used to distribute pharmaceutical products as soon as possible. Moreover, we strengthened our proposal algorithm with 2-Opt Algorithm to get optimal results in earlier iterations. Different datasets from a library were applied to measure the quality of solutions and computation time. At the end of the work, we observed that our proposed algorithm generates successful solutions in an acceptable running time. This study will be extended with a new mutation concept as future work.\",\"PeriodicalId\":250276,\"journal\":{\"name\":\"2020 International Conference on Electrical Engineering (ICEE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE49691.2020.9249926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE49691.2020.9249926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Evolutionary Approach to Multiple Traveling Salesman Problem for Efficient Distribution of Pharmaceutical Products
Considerable growth of computer science has created novel solutions for variable problem fields and has increased the efficiency of available solutions. Evolutionary algorithms are quite successful in dealing with real-world problems that require optimization. In this article, we implemented a Genetic Algorithm that is well known evolutionary algorithm in order to provide an efficient solution for the Distribution of Pharmaceutical Products, which is a vital optimization problem, especially in situations such as a pandemic. The Multiple Traveling Salesman Problem approach was used to distribute pharmaceutical products as soon as possible. Moreover, we strengthened our proposal algorithm with 2-Opt Algorithm to get optimal results in earlier iterations. Different datasets from a library were applied to measure the quality of solutions and computation time. At the end of the work, we observed that our proposed algorithm generates successful solutions in an acceptable running time. This study will be extended with a new mutation concept as future work.