Jiaxiong Li, K. Mohanalingam, Omkar Gupte, Zhijian Sun, K. Moon, C. Wong
{"title":"芳香稳压器提高电力电子用环氧树脂高压稳定性的研究","authors":"Jiaxiong Li, K. Mohanalingam, Omkar Gupte, Zhijian Sun, K. Moon, C. Wong","doi":"10.1109/ECTC32696.2021.00367","DOIUrl":null,"url":null,"abstract":"Drive train electrification in automotive industry has become the general trend in recent years. As crucial components in the encapsulation and isolation of future wide-bandgap semiconductor-based power cards, epoxy resin and its composites face great challenges from the high voltage operation. This work provides an exploration into employing a group of polycyclic aromatic hydrocarbon molecules with varied number of aromatic rings, namely naphthalene, anthracene and pyrene, as voltage stabilizers in epoxy resin. The conjugated $\\pi$ system can be excited by the incoming high energy electrons, thus absorbing their kinetic energy which endangers the polymer integrity. The UV-Vis spectra of the compounds were recorded to illustrate the energy absorbing behavior, and the effects of these additives on epoxy curing, glass transition temperature and dielectric properties are presented. In the study, pyrene was found to enhance the breakdown voltage of the epoxy film.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Aromatic Voltage Stabilizers for Enhancing High Voltage Stability of Epoxy for Power Electronics\",\"authors\":\"Jiaxiong Li, K. Mohanalingam, Omkar Gupte, Zhijian Sun, K. Moon, C. Wong\",\"doi\":\"10.1109/ECTC32696.2021.00367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drive train electrification in automotive industry has become the general trend in recent years. As crucial components in the encapsulation and isolation of future wide-bandgap semiconductor-based power cards, epoxy resin and its composites face great challenges from the high voltage operation. This work provides an exploration into employing a group of polycyclic aromatic hydrocarbon molecules with varied number of aromatic rings, namely naphthalene, anthracene and pyrene, as voltage stabilizers in epoxy resin. The conjugated $\\\\pi$ system can be excited by the incoming high energy electrons, thus absorbing their kinetic energy which endangers the polymer integrity. The UV-Vis spectra of the compounds were recorded to illustrate the energy absorbing behavior, and the effects of these additives on epoxy curing, glass transition temperature and dielectric properties are presented. In the study, pyrene was found to enhance the breakdown voltage of the epoxy film.\",\"PeriodicalId\":351817,\"journal\":{\"name\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC32696.2021.00367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Aromatic Voltage Stabilizers for Enhancing High Voltage Stability of Epoxy for Power Electronics
Drive train electrification in automotive industry has become the general trend in recent years. As crucial components in the encapsulation and isolation of future wide-bandgap semiconductor-based power cards, epoxy resin and its composites face great challenges from the high voltage operation. This work provides an exploration into employing a group of polycyclic aromatic hydrocarbon molecules with varied number of aromatic rings, namely naphthalene, anthracene and pyrene, as voltage stabilizers in epoxy resin. The conjugated $\pi$ system can be excited by the incoming high energy electrons, thus absorbing their kinetic energy which endangers the polymer integrity. The UV-Vis spectra of the compounds were recorded to illustrate the energy absorbing behavior, and the effects of these additives on epoxy curing, glass transition temperature and dielectric properties are presented. In the study, pyrene was found to enhance the breakdown voltage of the epoxy film.