条状域上的次线性微分包含

Csaba Farkas, R. Fuller, A. Kristály
{"title":"条状域上的次线性微分包含","authors":"Csaba Farkas, R. Fuller, A. Kristály","doi":"10.1109/SACI.2013.6608964","DOIUrl":null,"url":null,"abstract":"This paper deals with a sublinear differential inclusion problem (P<sub>λ</sub>) depending on a parameter λ > 0 which is defined on a strip-like domain subject to the zero Dirichlet boundary condition. By variational methods, we prove that for large values of λ, problem (P<sub>λ</sub>) has at least two non-zero axially symmetric weak solutions.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sublinear differential inclusion on strip-like domains\",\"authors\":\"Csaba Farkas, R. Fuller, A. Kristály\",\"doi\":\"10.1109/SACI.2013.6608964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a sublinear differential inclusion problem (P<sub>λ</sub>) depending on a parameter λ > 0 which is defined on a strip-like domain subject to the zero Dirichlet boundary condition. By variational methods, we prove that for large values of λ, problem (P<sub>λ</sub>) has at least two non-zero axially symmetric weak solutions.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类基于参数λ > 0的次线性微分包含问题(Pλ),该问题定义在符合零Dirichlet边界条件的条形区域上。用变分方法证明了对于λ的大值,问题(Pλ)至少有两个非零轴对称弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sublinear differential inclusion on strip-like domains
This paper deals with a sublinear differential inclusion problem (Pλ) depending on a parameter λ > 0 which is defined on a strip-like domain subject to the zero Dirichlet boundary condition. By variational methods, we prove that for large values of λ, problem (Pλ) has at least two non-zero axially symmetric weak solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信