通过模糊建模实现知识和数据的融合

Clive Marsh, C. McGowan
{"title":"通过模糊建模实现知识和数据的融合","authors":"Clive Marsh, C. McGowan","doi":"10.1109/ANNES.1995.499487","DOIUrl":null,"url":null,"abstract":"Typically, two sources of information about a system are available: some artisan knowledge and a sample of input-output data. This paper proposes a method for the amalgamation of these to synthesise a fuzzy model of the system. The artisan knowledge will likely be qualitative, of low resolution and accuracy whilst the data sample noisy and incomplete (not comprehensively covering the whole input space). A model derived from the union of these is potentially superior to one developed from either alone.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Amalgamation of knowledge and data through fuzzy modelling\",\"authors\":\"Clive Marsh, C. McGowan\",\"doi\":\"10.1109/ANNES.1995.499487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, two sources of information about a system are available: some artisan knowledge and a sample of input-output data. This paper proposes a method for the amalgamation of these to synthesise a fuzzy model of the system. The artisan knowledge will likely be qualitative, of low resolution and accuracy whilst the data sample noisy and incomplete (not comprehensively covering the whole input space). A model derived from the union of these is potentially superior to one developed from either alone.\",\"PeriodicalId\":123427,\"journal\":{\"name\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"volume\":\"314 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANNES.1995.499487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通常,关于系统的两个信息源是可用的:一些技术知识和输入输出数据的样本。本文提出了一种综合这些因素的方法来综合系统的模糊模型。工匠知识可能是定性的,低分辨率和准确性,而数据样本嘈杂且不完整(未全面覆盖整个输入空间)。由这两者结合而来的模型可能比单独由其中任何一种发展而来的模型要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amalgamation of knowledge and data through fuzzy modelling
Typically, two sources of information about a system are available: some artisan knowledge and a sample of input-output data. This paper proposes a method for the amalgamation of these to synthesise a fuzzy model of the system. The artisan knowledge will likely be qualitative, of low resolution and accuracy whilst the data sample noisy and incomplete (not comprehensively covering the whole input space). A model derived from the union of these is potentially superior to one developed from either alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信