半监督卷积神经网络在选择性激光熔化现场视频监控中的应用

Bodi Yuan, B. Giera, G. Guss, Ibo Matthews, Sara McMains
{"title":"半监督卷积神经网络在选择性激光熔化现场视频监控中的应用","authors":"Bodi Yuan, B. Giera, G. Guss, Ibo Matthews, Sara McMains","doi":"10.1109/WACV.2019.00084","DOIUrl":null,"url":null,"abstract":"Selective Laser Melting (SLM) is a metal additive manufacturing technique. The lack of SLM process repeatability is a barrier for industrial progression. SLM product quality is hard to control, even when using fixed system settings. Thus SLM could benefit from a monitoring system that provides quality assessments in real-time. Since there is no publicly available SLM dataset, we ran experiments to collect over one thousand videos, measured the physical output via height map images, and applied a proposed image processing algorithm to them to produce a dataset for semi-supervised learning. Then we trained convolutional neural networks (CNNs) to recognize desired quality metrics from videos. Experimental results demonstrate our the effectiveness of our proposed monitoring approach and also show that the semi-supervised model can mitigate the time and expense of labeling an entire SLM dataset.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"56 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Semi-Supervised Convolutional Neural Networks for In-Situ Video Monitoring of Selective Laser Melting\",\"authors\":\"Bodi Yuan, B. Giera, G. Guss, Ibo Matthews, Sara McMains\",\"doi\":\"10.1109/WACV.2019.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective Laser Melting (SLM) is a metal additive manufacturing technique. The lack of SLM process repeatability is a barrier for industrial progression. SLM product quality is hard to control, even when using fixed system settings. Thus SLM could benefit from a monitoring system that provides quality assessments in real-time. Since there is no publicly available SLM dataset, we ran experiments to collect over one thousand videos, measured the physical output via height map images, and applied a proposed image processing algorithm to them to produce a dataset for semi-supervised learning. Then we trained convolutional neural networks (CNNs) to recognize desired quality metrics from videos. Experimental results demonstrate our the effectiveness of our proposed monitoring approach and also show that the semi-supervised model can mitigate the time and expense of labeling an entire SLM dataset.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"56 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

选择性激光熔化(SLM)是一种金属增材制造技术。缺乏SLM过程的可重复性是工业发展的障碍。即使使用固定的系统设置,SLM产品质量也很难控制。因此,SLM可以从实时提供高质量评估的监测系统中受益。由于没有公开可用的SLM数据集,我们进行了实验,收集了1000多个视频,通过高度图图像测量了物理输出,并将提出的图像处理算法应用于它们,以生成用于半监督学习的数据集。然后我们训练卷积神经网络(cnn)从视频中识别所需的质量指标。实验结果证明了我们所提出的监测方法的有效性,也表明半监督模型可以减少标记整个SLM数据集的时间和费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Convolutional Neural Networks for In-Situ Video Monitoring of Selective Laser Melting
Selective Laser Melting (SLM) is a metal additive manufacturing technique. The lack of SLM process repeatability is a barrier for industrial progression. SLM product quality is hard to control, even when using fixed system settings. Thus SLM could benefit from a monitoring system that provides quality assessments in real-time. Since there is no publicly available SLM dataset, we ran experiments to collect over one thousand videos, measured the physical output via height map images, and applied a proposed image processing algorithm to them to produce a dataset for semi-supervised learning. Then we trained convolutional neural networks (CNNs) to recognize desired quality metrics from videos. Experimental results demonstrate our the effectiveness of our proposed monitoring approach and also show that the semi-supervised model can mitigate the time and expense of labeling an entire SLM dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信