基于支持向量机的改进局部三元模式人脸识别

Pattarakamon Rangsee, K. Raja, V. R.
{"title":"基于支持向量机的改进局部三元模式人脸识别","authors":"Pattarakamon Rangsee, K. Raja, V. R.","doi":"10.1109/ICIIBMS.2018.8549952","DOIUrl":null,"url":null,"abstract":"Face recognition (FR) has drawn considerable interest and attention in the area of pattern recognition. FR is still a challenging task in real time applications even though they are a number of face recognition algorithms which are available and work in various constrained environment. The paper proposes a FR algorithm using Modified Local Ternary Pattern (MLTP) with multi class Support Vector Machine (SVM) classifier. The MLTP features of the face images are classified by an Error-Correcting Output Code (ECOC) multiclass model with SVM. The proposed method is tested on six standard face databases. The experimental results have been demonstrated that the performance of MLTP with SVM can achieve higher recognition accuracy compared to the conventional methods.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modified Local Ternary Pattern Based Face Recognition Using SVM\",\"authors\":\"Pattarakamon Rangsee, K. Raja, V. R.\",\"doi\":\"10.1109/ICIIBMS.2018.8549952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition (FR) has drawn considerable interest and attention in the area of pattern recognition. FR is still a challenging task in real time applications even though they are a number of face recognition algorithms which are available and work in various constrained environment. The paper proposes a FR algorithm using Modified Local Ternary Pattern (MLTP) with multi class Support Vector Machine (SVM) classifier. The MLTP features of the face images are classified by an Error-Correcting Output Code (ECOC) multiclass model with SVM. The proposed method is tested on six standard face databases. The experimental results have been demonstrated that the performance of MLTP with SVM can achieve higher recognition accuracy compared to the conventional methods.\",\"PeriodicalId\":430326,\"journal\":{\"name\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2018.8549952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8549952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人脸识别在模式识别领域引起了极大的兴趣和关注。在实时应用中,人脸识别仍然是一项具有挑战性的任务,尽管有许多可用的人脸识别算法可以在各种约束环境中工作。提出了一种基于改进局部三元模式(MLTP)和多类支持向量机(SVM)分类器的FR算法。基于支持向量机的ECOC (Error-Correcting Output Code)多类模型对人脸图像的MLTP特征进行分类。在6个标准人脸数据库上对该方法进行了测试。实验结果表明,与传统方法相比,基于支持向量机的MLTP可以达到更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Local Ternary Pattern Based Face Recognition Using SVM
Face recognition (FR) has drawn considerable interest and attention in the area of pattern recognition. FR is still a challenging task in real time applications even though they are a number of face recognition algorithms which are available and work in various constrained environment. The paper proposes a FR algorithm using Modified Local Ternary Pattern (MLTP) with multi class Support Vector Machine (SVM) classifier. The MLTP features of the face images are classified by an Error-Correcting Output Code (ECOC) multiclass model with SVM. The proposed method is tested on six standard face databases. The experimental results have been demonstrated that the performance of MLTP with SVM can achieve higher recognition accuracy compared to the conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信