自适应遗传规划在数据挖掘分类中的应用

Nailah Al-Madi, Simone A. Ludwig
{"title":"自适应遗传规划在数据挖掘分类中的应用","authors":"Nailah Al-Madi, Simone A. Ludwig","doi":"10.1109/NaBIC.2012.6402243","DOIUrl":null,"url":null,"abstract":"Classification is a data mining method that assigns items in a collection to target classes with the goal to accurately predict the target class for each item in the data. Genetic programming (GP) is one of the effective evolutionary computation techniques to solve classification problems, however, it suffers from a long run time. In addition, there are many parameters that need to be set before the GP is run. In this paper, we propose an adaptive GP that automatically determines the best parameters of a run, and executes the classification faster than standard GP. This adaptive GP has three variations. The first variant consists of an adaptive selection process ensuring that the produced solutions in the next generation are better than the solutions in the previous generation. The second variant adapts the crossover and mutation rates by modifying the probabilities ensuring that a solution with a high fitness is protected. And the third variant is an adaptive function list that automatically changes the functions used by deleting the functions that do not favorably contribute to the classification. These proposed variations were implemented and compared to the standard GP. The results show that a significant speedup can be achieved by obtaining similar classification accuracies.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Adaptive genetic programming applied to classification in data mining\",\"authors\":\"Nailah Al-Madi, Simone A. Ludwig\",\"doi\":\"10.1109/NaBIC.2012.6402243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is a data mining method that assigns items in a collection to target classes with the goal to accurately predict the target class for each item in the data. Genetic programming (GP) is one of the effective evolutionary computation techniques to solve classification problems, however, it suffers from a long run time. In addition, there are many parameters that need to be set before the GP is run. In this paper, we propose an adaptive GP that automatically determines the best parameters of a run, and executes the classification faster than standard GP. This adaptive GP has three variations. The first variant consists of an adaptive selection process ensuring that the produced solutions in the next generation are better than the solutions in the previous generation. The second variant adapts the crossover and mutation rates by modifying the probabilities ensuring that a solution with a high fitness is protected. And the third variant is an adaptive function list that automatically changes the functions used by deleting the functions that do not favorably contribute to the classification. These proposed variations were implemented and compared to the standard GP. The results show that a significant speedup can be achieved by obtaining similar classification accuracies.\",\"PeriodicalId\":103091,\"journal\":{\"name\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2012.6402243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

分类是一种数据挖掘方法,它将集合中的项分配给目标类,目的是准确预测数据中每个项的目标类。遗传规划是解决分类问题的一种有效的进化计算方法,但其运行时间较长。此外,在运行GP之前,还有很多参数需要设置。在本文中,我们提出了一种自适应GP,它可以自动确定运行的最佳参数,并且比标准GP更快地执行分类。这种自适应GP有三种变体。第一个变体包括一个自适应选择过程,确保下一代产生的解决方案比上一代的解决方案更好。第二种变体通过修改概率来调整交叉和突变率,以确保具有高适应度的解得到保护。第三种变体是自适应函数列表,它通过删除对分类不利的函数来自动更改所使用的函数。这些建议的变化被实现,并与标准GP进行了比较。结果表明,在获得相似的分类精度的情况下,可以获得显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive genetic programming applied to classification in data mining
Classification is a data mining method that assigns items in a collection to target classes with the goal to accurately predict the target class for each item in the data. Genetic programming (GP) is one of the effective evolutionary computation techniques to solve classification problems, however, it suffers from a long run time. In addition, there are many parameters that need to be set before the GP is run. In this paper, we propose an adaptive GP that automatically determines the best parameters of a run, and executes the classification faster than standard GP. This adaptive GP has three variations. The first variant consists of an adaptive selection process ensuring that the produced solutions in the next generation are better than the solutions in the previous generation. The second variant adapts the crossover and mutation rates by modifying the probabilities ensuring that a solution with a high fitness is protected. And the third variant is an adaptive function list that automatically changes the functions used by deleting the functions that do not favorably contribute to the classification. These proposed variations were implemented and compared to the standard GP. The results show that a significant speedup can be achieved by obtaining similar classification accuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信