幂集代数的对偶性

G. Bezhanishvili, L. Carai, P. Morandi
{"title":"幂集代数的对偶性","authors":"G. Bezhanishvili, L. Carai, P. Morandi","doi":"10.46298/lmcs-18(1:27)2022","DOIUrl":null,"url":null,"abstract":"Let CABA be the category of complete and atomic boolean algebras and complete\nboolean homomorphisms, and let CSL be the category of complete\nmeet-semilattices and complete meet-homomorphisms. We show that the forgetful\nfunctor from CABA to CSL has a left adjoint. This allows us to describe an\nendofunctor H on CABA such that the category Alg(H) of algebras for H is dually\nequivalent to the category Coalg(P) of coalgebras for the powerset endofunctor\nP on Set. As a consequence, we derive Thomason duality from Tarski duality,\nthus paralleling how J\\'onsson-Tarski duality is derived from Stone duality.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"29 56","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duality for powerset coalgebras\",\"authors\":\"G. Bezhanishvili, L. Carai, P. Morandi\",\"doi\":\"10.46298/lmcs-18(1:27)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let CABA be the category of complete and atomic boolean algebras and complete\\nboolean homomorphisms, and let CSL be the category of complete\\nmeet-semilattices and complete meet-homomorphisms. We show that the forgetful\\nfunctor from CABA to CSL has a left adjoint. This allows us to describe an\\nendofunctor H on CABA such that the category Alg(H) of algebras for H is dually\\nequivalent to the category Coalg(P) of coalgebras for the powerset endofunctor\\nP on Set. As a consequence, we derive Thomason duality from Tarski duality,\\nthus paralleling how J\\\\'onsson-Tarski duality is derived from Stone duality.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"29 56\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(1:27)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(1:27)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设CABA是完全原子布尔代数和完全布尔同态的范畴,CSL是完全满足半格和完全满足同态的范畴。我们证明了从CABA到CSL的遗忘函子有一个左伴随。这允许我们描述CABA上的内函子H,使得H的代数范畴Alg(H)与集合上幂集内函子P的余代数范畴Coalg(P)双等价。因此,我们从Tarski对偶中推导出Thomason对偶,从而平行于从Stone对偶中推导出J的onsson-Tarski对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality for powerset coalgebras
Let CABA be the category of complete and atomic boolean algebras and complete boolean homomorphisms, and let CSL be the category of complete meet-semilattices and complete meet-homomorphisms. We show that the forgetful functor from CABA to CSL has a left adjoint. This allows us to describe an endofunctor H on CABA such that the category Alg(H) of algebras for H is dually equivalent to the category Coalg(P) of coalgebras for the powerset endofunctor P on Set. As a consequence, we derive Thomason duality from Tarski duality, thus paralleling how J\'onsson-Tarski duality is derived from Stone duality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信