平衡图:卷积神经网络研究的辅助工具

Lyell Embery, Eva Ignatious, S. Azam, Miriam Jonkman, Friso De Boer
{"title":"平衡图:卷积神经网络研究的辅助工具","authors":"Lyell Embery, Eva Ignatious, S. Azam, Miriam Jonkman, Friso De Boer","doi":"10.1109/SNPD54884.2022.10051785","DOIUrl":null,"url":null,"abstract":"Deep Learning Neural Networks offer a powerful tool to process visual data and to make decisions, but a limitation is its black box nature which offers low transparency to human examiners. This hurdle presents a particular challenge in using Neural Networks in safety-critical systems, which require high performance and transparency such as medical diagnosis of life-threatening diseases. This paper seeks to build and test a neural network for grading gliomas of comparable function and complexity to others in the field, then to apply Data Visualisation techniques to render the internal workings of the NN more understandable to a human observer. The purpose is to develop a system that can classify brain tumors into low-grade gliomas (LGG) and high-grade gliomas (HGG), to aid with diagnosis and prognosis The Brain Tumor Segmentation Challenge 2020 (BraTS2020) data set was used, with data categorised based on a combination of grade assigned in BraTS2020, and the labels in the segmentation data. As some categories are over-represented, methods were employed to ensure a better balance between different categories. Data augmentation was used to expand the limited number of scans in the BraTS2020. A 3D convolution neural network (CNN) was constructed to grade gliomas. With the method developed in this paper, an accuracy of 94.1% was achieved. A newly devised method to visually represent the weights of a convolution is explored. These graphs, called ‘weight graphs’ allow convolutions to be condensed into a visual medium. The weight graph is designed for easy visual interpretation of the weights assigned within a particular convolution. To overcome the limitations of weight graphs, an alternate graph was devised, called a balance graph, because it shows the overall balance of weights in a kernel, allowing for a quick impression of what effect a single kernel has. It is demonstrated that Balance Graphs improve the accessibility and transparency of the of the weights in convolution layers.","PeriodicalId":425462,"journal":{"name":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balance Graphs: An Aid for Studying Convolutional Neural Networks\",\"authors\":\"Lyell Embery, Eva Ignatious, S. Azam, Miriam Jonkman, Friso De Boer\",\"doi\":\"10.1109/SNPD54884.2022.10051785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning Neural Networks offer a powerful tool to process visual data and to make decisions, but a limitation is its black box nature which offers low transparency to human examiners. This hurdle presents a particular challenge in using Neural Networks in safety-critical systems, which require high performance and transparency such as medical diagnosis of life-threatening diseases. This paper seeks to build and test a neural network for grading gliomas of comparable function and complexity to others in the field, then to apply Data Visualisation techniques to render the internal workings of the NN more understandable to a human observer. The purpose is to develop a system that can classify brain tumors into low-grade gliomas (LGG) and high-grade gliomas (HGG), to aid with diagnosis and prognosis The Brain Tumor Segmentation Challenge 2020 (BraTS2020) data set was used, with data categorised based on a combination of grade assigned in BraTS2020, and the labels in the segmentation data. As some categories are over-represented, methods were employed to ensure a better balance between different categories. Data augmentation was used to expand the limited number of scans in the BraTS2020. A 3D convolution neural network (CNN) was constructed to grade gliomas. With the method developed in this paper, an accuracy of 94.1% was achieved. A newly devised method to visually represent the weights of a convolution is explored. These graphs, called ‘weight graphs’ allow convolutions to be condensed into a visual medium. The weight graph is designed for easy visual interpretation of the weights assigned within a particular convolution. To overcome the limitations of weight graphs, an alternate graph was devised, called a balance graph, because it shows the overall balance of weights in a kernel, allowing for a quick impression of what effect a single kernel has. It is demonstrated that Balance Graphs improve the accessibility and transparency of the of the weights in convolution layers.\",\"PeriodicalId\":425462,\"journal\":{\"name\":\"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD54884.2022.10051785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD54884.2022.10051785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习神经网络提供了一个强大的工具来处理视觉数据和做出决策,但其局限性在于它的黑箱性质,这对人类审查员来说透明度很低。这一障碍对在安全关键系统中使用神经网络提出了特别的挑战,这些系统需要高性能和透明度,例如对危及生命的疾病的医疗诊断。本文试图建立和测试一个神经网络,用于对该领域中具有可比功能和复杂性的胶质瘤进行分级,然后应用数据可视化技术,使神经网络的内部工作更容易被人类观察者理解。目的是开发一种可以将脑肿瘤分为低级别胶质瘤(LGG)和高级别胶质瘤(HGG)的系统,以帮助诊断和预后。使用脑肿瘤分割挑战2020 (BraTS2020)数据集,根据BraTS2020中分配的级别和分割数据中的标签组合对数据进行分类。由于某些类别的代表人数过多,因此采用了确保不同类别之间更好平衡的方法。数据增强用于扩展BraTS2020中有限的扫描次数。构建三维卷积神经网络(CNN)对胶质瘤进行分级。该方法的准确率为94.1%。探索了一种新的方法来直观地表示卷积的权重。这些图被称为“权重图”,可以将卷积压缩成一种视觉媒介。权重图的设计是为了方便直观地解释在特定卷积中分配的权重。为了克服权值图的局限性,设计了一种替代图,称为平衡图,因为它显示了核中权值的总体平衡,允许快速了解单个核的影响。结果表明,平衡图提高了卷积层中权值的可及性和透明性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balance Graphs: An Aid for Studying Convolutional Neural Networks
Deep Learning Neural Networks offer a powerful tool to process visual data and to make decisions, but a limitation is its black box nature which offers low transparency to human examiners. This hurdle presents a particular challenge in using Neural Networks in safety-critical systems, which require high performance and transparency such as medical diagnosis of life-threatening diseases. This paper seeks to build and test a neural network for grading gliomas of comparable function and complexity to others in the field, then to apply Data Visualisation techniques to render the internal workings of the NN more understandable to a human observer. The purpose is to develop a system that can classify brain tumors into low-grade gliomas (LGG) and high-grade gliomas (HGG), to aid with diagnosis and prognosis The Brain Tumor Segmentation Challenge 2020 (BraTS2020) data set was used, with data categorised based on a combination of grade assigned in BraTS2020, and the labels in the segmentation data. As some categories are over-represented, methods were employed to ensure a better balance between different categories. Data augmentation was used to expand the limited number of scans in the BraTS2020. A 3D convolution neural network (CNN) was constructed to grade gliomas. With the method developed in this paper, an accuracy of 94.1% was achieved. A newly devised method to visually represent the weights of a convolution is explored. These graphs, called ‘weight graphs’ allow convolutions to be condensed into a visual medium. The weight graph is designed for easy visual interpretation of the weights assigned within a particular convolution. To overcome the limitations of weight graphs, an alternate graph was devised, called a balance graph, because it shows the overall balance of weights in a kernel, allowing for a quick impression of what effect a single kernel has. It is demonstrated that Balance Graphs improve the accessibility and transparency of the of the weights in convolution layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信